3.2 Rmutování
Rmutovací proces je velmi kritický z hlediska tvorby prekurzorů nenanu. Lipoxygenasa se inaktivuje teplotou nad 65 °C. Nalezený poločas spotřeby kyslíku rmutem se pohybuje při 74 °C mezi pět až osmi minutami [12]. Rmutování má též velký význam pro sicevozáci a vy- slazovací proces.

3.2.1 Vystírání

3.2.2 Michání
Intenzivní michání rmutů je nutné pro zabezpečení přenosu tepla a hmoty, avšak tento proces, obdobně jako pře- čerpatavá, deintegrace částice pevné fáze. Podle získaných zkušeností se částice s malou odolností proti střížným silám snadno drobí na menší [6]. To však má vliv na další proces výrobě piva, neboť rozložení velikostí částic pevné fáze koreluje s průběhem sche- zování [7].

Proto je nutné věnovat velkou pozornost i konstrukci michadla, která musí být navržena tak, aby zajistilo dosta- tečné promíchání díla a zamezilo nežá- doucí přepáťení na topnou stěnu, na dru- hou stranu nesmí michání způsobovat oxidaci rmutů. Podle zkušenosti se nedoporučuje obvodová rychlost michadla vyšší než 2 m/s.

Rovněž se nedoporučuje doba mi- chání během rmutování vyšší než 40 mi- nut. Učelem je zabraňování tvorbě oxidá- ního gelu a nadměrnému uvolnění gumovitéch látek.

3.2.3 Poměr vystírání (voda/sladový šrot)
Normálně se pro sladinový filtr Meura 2001 volí poměr vystírání voda/sladový šrot v rozsahu 2,5 až 2,8, v některých případech je možné volit tento poměr až 2,2. Při užití sladinových filtrů to tedy znamená, že první vystřírky mají kon- centraci až 28 %, nejlepší výsledky jsou však dosahovány při hodnotě 22 až 24 %. Předpokládá se, že hustá rmuty jsou v důsledku výšší redukce schop- nosti na jednotku objemu proti oxidaci více chráněny nežžíšší rmuty.

3.2.4 Doba rmutování
V důsledku jemného šrotování je ak- tivní povrch částic pevné fáze smažený vodou téměř čtyřikrát vyšší než při hru- bém šrotování. Tak probíhají procesy zmazování, zteklecí a zrušení pod- statné rychleji. Ze zkušenosti některých zahraničních pivovarů je známo, že za specifických podmínek umožňuje kratká doba rmutování při výrobě piva plzen- ského typu při teplotě odmutování 78 °C výrobu až dvacetá várek denně při použití pouze jedné rmutovací pánve.

3.2.5 Přečerpační rmutování
Konstrukce strojního zařízení a potrubí ve vzněncí je z důvodu zařízení dobrého přenosu hmoty nutno věnovat velkou po- zornost. Kvůli zamezení výskytu nežá- doucích střížních sil se musí při návrhu potrubných tras vodík velké poloměry pro potrubí kolen. Odstředivá čerpadla mají zajišťovat šetrnou dopravu, frek- vence otáčení rotoru čerpadla by ne- měla být vyšší než 900 otáček za minutu, čerpadla je nutno vybavit frekvenčním měřicem. O'Rourke et al. sledoval výskyt změn chut piva během stárnutí v závislosti na změnách, provedených ve vzněnci při rmutování [12]. Základní změnu bylo zavedeno rmutovacího potrubí do dna vystír-ací káde a rmutovací pánve. Toto opatření se projevilo okamžitým pokle- sem proksilešení rmutů a sladiny při sce- zování asi na 67 % původní hodnoty. Dega- stacií zkoušky prokázaly čistotu a lepší chut takto vyrobeného piva, zá- tmoco u piva, vyrobeného ve vzněnci bez jakýchkoliv úprav, byly zjištěny příznaky stárnutí již po kratké době.

3.3 Sicevozáci a vysozazování

3.3.1 Konstrukce sladinového filtru z hlediska snížení oxidace sladiny

3.3.2 Parametry sicevozáčí
Průběh sicevozáčího procesu je zná- zorněn v tab. 8.

V závislosti na homogenitě rozložení vrstvy mláta v jednotlivých komorách a dalších faktorech, ovlivňujících proces sicevozáčí a vysozazování sladu a rmutu, je měřitku, se pohybovaly parametry sice- vozáčího a vysozazováního procesu, pro- dených na sladinovém filtru Meura 2001,

Tab. 8 Doba sicevozáčí

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Doba sicevozáčí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přehřívání sladového filtru</td>
<td>5 minut</td>
</tr>
<tr>
<td>Přehřívání předkou</td>
<td>25 až 30 minut</td>
</tr>
<tr>
<td>Předhřívaní mláta</td>
<td>5 minut</td>
</tr>
<tr>
<td>Vysozazování (voda/šrot) v 1. cyklus</td>
<td>5 minut</td>
</tr>
<tr>
<td>Vysozazování (voda/šrot) v 2. cyklus</td>
<td>45 minut</td>
</tr>
<tr>
<td>Čidlování mláta</td>
<td>8 minut</td>
</tr>
<tr>
<td>Vyprázdnění sladinového filtru</td>
<td>2 minuty</td>
</tr>
<tr>
<td>Celková doba</td>
<td>95 až 100 minut</td>
</tr>
</tbody>
</table>
Tab. 9 Parametry sladiny ze sladinového filtru Meura 2001

<table>
<thead>
<tr>
<th>pivo půřešského typu</th>
<th>70% sladu</th>
<th>30% suoragce</th>
</tr>
</thead>
<tbody>
<tr>
<td>stěknání předu</td>
<td>212 h</td>
<td>272 h</td>
</tr>
<tr>
<td>předlisování mlíta</td>
<td>38 h</td>
<td>38 h</td>
</tr>
<tr>
<td>výšlikování</td>
<td>250 h</td>
<td>250 h</td>
</tr>
<tr>
<td>lisování mlíta</td>
<td>50 h</td>
<td>50 h</td>
</tr>
<tr>
<td>Celkem</td>
<td>550 h</td>
<td>610 h</td>
</tr>
<tr>
<td>obsah extraktu</td>
<td>13,6%</td>
<td>14,8%</td>
</tr>
<tr>
<td>čiromlíta sladiny</td>
<td>< 5,5 EBC</td>
<td>< 5,5 EBC</td>
</tr>
<tr>
<td>kaly</td>
<td>< 5 m/l</td>
<td>< 5 m/l</td>
</tr>
<tr>
<td>barva sladiny</td>
<td>6 EBC</td>
<td>5 EBC</td>
</tr>
<tr>
<td>polyenolny</td>
<td>180 mg/l</td>
<td>170 mg/l</td>
</tr>
<tr>
<td>dusik</td>
<td>860 mg/l</td>
<td>800 mg/l</td>
</tr>
</tbody>
</table>

přibližně kolem hodnot, udaných v tab. 9.

3.4 Chemolov
Během vaření mládiny je nutné, pokud je používáno michadlo, dodržovat požá-
davek na snížení stržížných sil na minim-
mum. Při splnění tohoto požadavku se pak dosáhne dobře mladinový lom [8]. Mladinové pánie různé konstrukce se jen málo liší v příjmu kyslíku mlad-
nou [9].

3.5 Vířivá kád nebo usazovací kád
Pro separaci horkých kalů je v pivov-
arském světě všeobecně používána ví-
řivá kád, zatím výjimečně usazovací kád. Na dobře konstruované vířivé kád lze dosáhnout uspokojivých výsledků, třebaže někdy nejsou ekonomicky vý-
hodné. Proto stále více používají sladíc
 technologický postup vaření kalů ke
rmutům na konci dalšího rmutovačního procesu. Potom je již výhodnější místo
vířivé kády používat usazovací kád, ve
které je oxidace kalů podstatně nižší.

Destrukce částic horkých kalů může
sledovat úžasným sil je velký vztah
k většímu lesk a nepříjemný zápach.

3.5.1 Princip separace horkých kalů
v usazovacím tanku
Pro separaci horkých kalů se nyní za-
číná používat i usazovací tank, spojený
s nádobou na kaly. Usazovací tank má
vysokokolový tvar a jeho velikost je
založena na objemu váry, zvětšeném o 10 %
pro zachycení pěny. Potrubí pro přívod
mládiny je situováno ve spodní části usaz-
ovacího tanku a přítok je řešen z hle-
diska minimálního přijmu kyslíku během jeho pilnění. Pro čerpaní výčerpené mladiny jsou určeny dvě potrubí větvě, jedna je ve spodní části stěny a druhá ve dnu usa-
zovacího tanku. Mezi tímto tankem a nádobou na kaly je instal-
ván přístroj pro měření čistoty mladiny (turbidimetr) a regulační
ventil, ovládaný tímto přístrojem. Nadoba na kal by měla být před-
plněna oxidem uhličitým, tímto postupem se zamezuje oxidaci li-
pidů v horkých kálech. Proces se
separace horkých kalů je obdobné jako celý postup výroby mladiny plně automatizován, přičemž

3.5.2 Vyhodnocení procesu separace horkých kalů

usazovací tanku

Usazovací tank umožňuje sladíci re-
produkci velké množství oxidu láken
 v
kvasované mladině. V případě potřeby
lze oxidu láken zredukovat na velmi nízkou hodnotu (< 5 ppm). Výhodou usaz-
ovačního tanku je též možnost jeho plně
automatizace a provedení až dvou
vároc za 24 hodin. Ztráty na výtežném je
už velmi nízké, získané výsledky proká-
zaly snížení výtrát v případě recykly
horkých kalů do další váry až na

4 PROVZDUŠNOVÁNÍ MLADINY

Kyslík je důležitým stavebním prvkem
 pro biosyntézu základních membránov-
ých lipidů kvasničné buňky. Odpovída-
jící přísunu kyslíku je nezbytný pro růst
kvasnic, průběh kvašení a chuť hotového piv.

4.1 Princip proksylikování kvasnic

Násadní kvasnice jsou proksylikovány
průchodem membránovým modulům s
paralelně uspořádanými kanálky, cílem
proksylikace je čištění tyčinek, které
byly nezbytné pro růst kvasnic, průběh kvašení a chuť hotového piv.

Membránový proksylikovací modul

<table>
<thead>
<tr>
<th>Materia:</th>
<th>slitiny oxid hlinitý</th>
<th>každý modul má sedm kanálků</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozměry:</td>
<td>délka modulu 900 mm</td>
<td>průměr modulu 25 mm</td>
</tr>
<tr>
<td></td>
<td>průměr kanálku 5 mm</td>
<td>velikost 0,005 mm</td>
</tr>
<tr>
<td></td>
<td>celkový mezikolový povrch 0,12 m²</td>
<td></td>
</tr>
</tbody>
</table>

Parametry:
- vysoký specifický povrch umožňující dobrý kontakt plynu/kapalina
- vysoká chemická odolnost (pH 1 až 14 při teplotě 60 °C až 70 °C)
- dobrá mechanická odolnost, možnost sterilizace páru
- možnost zvyšování kapacity jednoduchým přidáváním modulů

Obr. 2 Schéma a parametry membránového proksylikovacího modulu
nic, čímž se zaručuje jejich homogenita. Externí smyčky membránového modulu současně umožňují sledování teploty proksyličovaných kvasnic. Princip činnosti tohoto zařízení je patrný z obr. 3.

4.2 Výsledky
Na obr. 4 a 5 jsou znázorněny výsledky, dosažené při proksyličování kvasnic. Z výsledků je patrné, že po pěti hodinách proksyličování kvasnic jsou změny obsahu glykogenu a spotřeby kyslíku ve vzájemné relaci. Z pochodu zmíněné závislosti kvasníkového výkonu na esencialních lipidech buněčných mem-

brán se analyzoval a porovnával obsah mastných kyselin v případě aplikace proksyličovaných kvasnic do neprovzdušněné mladiny a konvenčně zakvasených kvasnic do provzdušněné mladiny. Výsledky jsou sumarizovány na obr. 6.

Mezi klasickým zakvasováním a zakvasováním membránovým zařízením proksyličovanými kvasnicemi byl pozorován malý rozdíl v obsahu nenasycených mastných kyselin (UFA), který v obou případech vzrostal v průběhu výroby kvasnic. Obsah nenasycených mastných kyselin (SF) zůstal při proksyličování kvasnic téměř konstantní. Po tříhodinovém proksyličování kvasnic bylo stanoveno trojnásobné zvýšení obsahu nenasycených mastných kyselin, což znamená zlepšenou rovnováhu membránového transportu.

S překvapením bylo zjištěno, že dosažené výsledky byly podobné pro obě použité koncentrace kvasnic. Neprokázala se významná korelace mezi rychlostí spotřeby kyslíku (OUR) a syntézou nenasycených mastných kyselin, což ukazuje, že při vysokých bu-

něčných houstotách je dodávka buněčného kyslíku dosud dostatečná pro uspokojení jejich metabolických požadavků. Tato skutečnost se dále potvrdila analyzo- váním obsahu ergosterolu v proksyličovaných kvasnicích, jak ukazuje obr. 7.

Ačkoliv byla nalezena dobrá korelace mezi maximem spotřeby kyslíku a vrcholom obsahu ergoste- rolu, zvýšení obsahu ergosterolu není ovšem podstatněm rozdilem v koncentraci oksyličovaných kvasnič-
ných suspenzii. Je však třeba poznat, že jsou pří-

nízkou a vysokou koncentrací kvasnic (obr. 8).

Z této skutečnosti vyplývá, že téměř 90% dostupného kyslíku v suspensi s vyso
kou koncentrací kvasnic se využívá k syntéze membránových lipidů. Zatímco v tomto případě se dosáhne uspokoj-

Obr. 5 Změny v obsahu glykogenu během proksyličování kvasnic

Obr. 8 Hmotnostní rovnováha kyslíku ve vztahu k syntéze nenasycených mastných kyselin v kvasnicích zakvas-

néch do mladiny

Obr. 7 Závislost syntézy ergosterolu na dodávce kysli-

ků u různých koncentracích kvasnic

Obr. 6 Změny v obsahu mastných kyselin během pro-

ksyličování kvasnic

Obr. 4 Vliv koncentrace kvasnic a dobry proksyličování na specifickou spotřebu kyslíku

Obr. 5 Změny v obsahu glykogenu během proksyličování kvasnic

Belgická firma Meura spolu se svým výzkumným oddělením Meura Technologies studovala vliv kyslíku během mletí sladu, rmutovacího procesu, sicezování, vyslazování ve slidovém filtru a průběhu hlavního kvašení na senzorické vlastnosti piva. Během tétoho zkušeb se prokázalo, že přítomnost kyslíku během rmutování a produktivního kvašení negativně ovlivňuje chuť vyrobeného piva, které během skládování dostává lepenkovou (oxidaci) příchuť. Proto firma Meura vynutila zvláštní způsob mletí sladu v disko-vém dispergátoru při vyloučení přítomnosti kyslíku. Další novou metodou, vynutilou firmou Meura, je proksylikování kvasinc ve zvláštním membránovém prexygenátoru (čistým kyslíkem) místě běžného produktivního kvašení.

The research center Meura Technologies of Belgian company Meura has studied an oxygen effect during malt grinding, mashing, mash filtration in mash filter and fermentation upon to changes of beer’s flavour during storage. The negative influence of the oxygen upon beer taste was determined, the beer brewed at present of oxygen obtained a card-board flavour while ageing. It was developed oxygenation controlling technology, that enables to reduce an oxygen uptake during malt grinding, mashing and lauter process and avoids worst oxidation. For grinding will be used a disc mill in which the malt is ground under water and CO2 protection. According to new method the yeast will be prexygenated (by pure oxygen) in membrane sparger instead of the worst aeration. Beer, produced under reduction of oxidation, had a better taste properties while ageing, to compare with another one, brewed in traditional way.

Vandenbussche, J. – Mojdl, L: Die Kontrolle der Oxidation in moderner Brauerei.
Belgische Firma Meura in ihrem Forschungszentrum Meura Technologies studierte einen Einfluss von oxidationsprozessen bei der Rohstoffzerkleinerung, Maischen, Läuten und Hauptgärung auf die sensorische Eigenschaften des Bieres. Es wurde eine negative Wirkung des Sauerstoffes auf diese Eigenschaften festgestellt. dadurch wurde ein sauerstoffsicheres Schrotungsverfahren entwickelt, nach dem wird Malz in Scheiben dispersiert unter Wasser und CO₂ Schutz verarbeitet. nächste neue Methode ist eine Hefepreoxxygenation (mit reinem Sauerstoff) in einem Membranendispersiermittel statt Würze zu belüften. Biere, die durch ein sauerstoffsicheres Verfahren bei der Schrotung, Läuten und durch belüftete Hefe hergestellt wurden, wiesen auch nach der Lagerung eine bessere Geschmackseigenschaften als die durch herkömmliche Weise vorbereitete Biere auf.

Фирма Meura (Бельгия) вместе с научно-исследовательским отделом Meura Technologies провела изучение влияния кислорода на сенсорические свойства пива в течение помола солода, разварки, выделения взвесей фильтрованием, выщелачивания в заторном фильтр-прессе и в течение главного брожения. В результате изучения было доказано, что наличие кислорода в течение разварки и аэрации суспе негативно влияет на вкус готового пива. Пиво в течение хранения получает окислительный привкус. Из этого разработала фа Meura особый способ помола солода в дисковом диспергаторе без наличия кислорода. Дальнейшим новым методом, разработанным фирмой Meura, является окисление дрожей в мембранном аэрато (чистым кислородом) вместо обычной аэрации сусла.