Rychlá a přesná metoda stanovení obsahu SO₂ ve chmelových hlávkách

PŘEMYSL HAUTKA a DRAHOMISSI PřEČIČEK; Výzkumný ústav chmeleářský, Zatec

Sfěření chmele je jedním z nejrozšířeněji konzervačních způsobů chmele. Kyslíčník stříčetý, adsorbovaný v nepatrných koncentracích v hlávkách chmele, má přižitlivý vliv na stabilitu hořkých látek [1] a svými redukčními vlastnostmi také příznivě ovlivňuje barevný vzhled chmele, kde napomáhá k vytvoření různých nepříznivých poškození barvy hlávek.

Adsorbovaný kyslíčník stříčetý se zjevně při vysších koncentracích z části oxydace z vzniku kyslíčníku sirového, který s vodními párami atmosféry dává kyselinnou sirovou, jež působí nepříznivě na kvalitu hlávek, především na jejich barvu. Proto je třeba v některých případech kontrolovat sfnění a stanovit jeho stupně v zájmu zpracovatelnosti jednotlivých partií chmele. Vzhledem k velmi malému obsahu kyslíčníku stříčetého, který zůstává po sfěření ve chmele, je velmi obtížné bezpřiradány analytickými vázkovými metodami stanovit jeho množství. Tyto metody selhávají, zejména u starších chmelů, kde je podstatná část kyslíčníku stříčetého již zoxydována [2].

Nejběžnější používanou metodou stanovení obsahu kyslíčníku stříčetého v sfěřeném chmélu je metoda s chloridem barevným. Při izolaci tohoto plynu se využívá jeho těkavosti s vodou párou a jinádo do roztoku jôdu, kde souběžně probíhá jeho oxidaace na kyslíčník sirový, dávající s vodou kyselinu sirovou. K jejímu vězkovému stanovení se využívá reakce stříhán s barevnými lonty. Citovaná metoda je zdlouhavá a vzhledem k malému množství kyslíčníku stříčetého ve chmele, značně nepřesná. To platí i o ostatních vázkových metodách (benzidinové atd.).

Rychlou metodou pro stanovení kyslíčníku stříčetého, je nepříznitější jodometrická metoda, zařaženou na tom, že se přidává vodný roztok stříčetánů do nadbytečného roztoku jôdu o známé normáli a zpětnou titrací tisoušitěm sodným se zjišťuje množství jôdu, který se zúčastnil reakce s kyslíčníkem stříčetým. Nevyhodou je, že kyslíčník stříčetý se vytěšuje vodní párou a spolu s ním těkají i chmelové síře. Tento způsob stanovení kyslíčníku stříčetého je nevhodný, protože při extrakci získaného destilátu organickými rozpouštědly se nepodaří kvantitativně oddělit chmelové síře od alkalického roztoku kyslíčníku stříčetého (prakticky stříčetanu). Většina látek obsažených ve chmelové síři je nenasytěný charakteru reagující s jodem a podstatně tak zvyšuje jeho spoušť, a tím znemožňuje použít tohoto způsobu pro stanovení obsahu kyslíčníku stříčetého ve chmele.

Z dalších metod, vyhledávacích fyzikálních přístrojů k stanovení tohoto plynu, můžou být uvažovány jeho reakce na kyslíčník stříčetý kyselinou, kterou se na některých laboratořích nebo přístrojích může provést. Z uvedených přístrojů byly vypracovány přesnější a expedicionní metoda, která ukazuje větší přesnost a není náročná na laboratorní vybavení. Používané podmínky mě představují komplexní metodu kolorimetrická [3], kterou autoři upřesnili na potřeby stanovení kyslíčníku stříčetého ve chmele.

Experimentální část

Princip metody

Rozemleťá chmelové dře se upraví do destilační baňky, přidáním kyseliny fosforové se vytváří kyslíčnik stříčetý, který se jímá v absorpčním roztoce. Absorpční roztok, ve kterém je obsazen SO₂, dává s fuchsín-formaldehydovým činidlem červenou fialové zbarvení, jehož intenzita je přímou úmernou koncentrací kyslíčnika stříčetého. Z kalibrační křivky se vytváří koncentrace SO₂. Tímto způsobem lze měnit 1 kvalitativní důkaz SO₂ ve chmele. Metoda
má vysokou citlivost a je ji možno zjistit 0,5 gama SO₂.

Potřebná činidla:
1. Kyselina fosforečná 85 % p. a.
2. Absorpční roztok +0,2 N NaOH s přídavkem 5 % glycerinu (antioxydační činidlo, aby se zabránilo oxydaci SO₂). Do odměrné baňky na 1000 ml se odvádí 8 g NaOH p. a. a příděl se 50 g glycerinu p. a., destilovanou vodou se doplní po změkč.

Příprava reagenčního roztoku:
Roztok fuchsínu: odvádí se 0,48 g bazického fuchsínu, rozpustí se v 16 ml etanolu, přidá se 44 ml konc. H₂SO₄ p. a. a 735 ml destilované vody a po 3 až 4 dnech se přetilítruje.

Roztok formálehydu: 5 ml 40 % formálehydu se zříli na 100 ml destilovanou vodou a promíchá.

Před použitím se smíchá 10 ml roztoku fuchsínu s 1 dílem formálehydu.

Příprava kalibrací křivky:
Základní roztok se připraví ze stříčitamu. Odvádí se 0,1054 g stříčitamu sodného p. a. [Merek] o hodnotě 99 % a rozpustí se v 500 ml 0,2 N NaOH s obsahem 5% glycerinu. Různé obaly obsahuje v 1 ml 100 gama SO₂. Standardy se připraví tím způsobem, aby základní roztok se zříli 0,2 N NaOH s přídavkem glycerinu tak, aby výsledné roztoky obsahovaly 1, 3, 6, 9 gama SO₂/ml. Z těchto roztoků se odměří po 1 ml do zkumávek, každé zkumávka se doplní na 15 ml absorpcním roztokem s přídavkem glycerinu, promíchá a přiděl se 10 ml reagenčního roztoku. Nechá se asi 20 min. stát až se ustálí zbarvení a pak se měří na fotokolorimetrilt filtrem 590 m. Nuž vědomé hodnoty se vynesou do souřadnicového systému, a tím se získá kalibrací křivka pro SO₂.

Vlastní stanovení
Do zbarveného baňky obsahu 750 ml se vpraví 10 g chmelové čerstvé, přiděle se 250 ml destilované vody, přidá se 10 ml 85% kyseliny fosforečné, baňka se napojí na chladicí chladič, jejich koncové musí zasahovat do nádoby s absorpcním roztokem (asi 50 ml). Konec chladiče se ponouží asi 1,5 až 2 cm. Od začátku se vody se dostituje 0,5 h. Po této době se nepravne odstraňí balíček s destilátem, po- něchání se asi 5 min. odkapat (aby se propásly chladiči), nesmí se přerušit. Potom se provede nadestilovaný roztok do odměrej balíčku na 200 ml a doplní absorpcním roztokem po rysku a promíchá. Takto připravený roztok se použije k vlastnímu stanovení obsahu kyslíku stříčitatu.

Pro velkou citlivost reakce se objeví zbarvení s fuchsín-formálehydovým činidlem úv a chmelů nesříšených avšak hodnota extinkce je vždy pod hranicí nejnížho standardu. U chmelů starších, sříšených, je třeba brát pouze 1 ml základního roztoku, u chmelů čerstvě sříšených postačí 0,1 ml základního roztoku. U chmelů nesříšených se odpína- te ze základního roztoku celých 15 ml. Postu- pujte se tak, že přesně odměřené množství, např. 0,5 ml základního roztoku se doplní na 15 ml absorpcním roztokem, úv a přiděl se 14,5 ml abs. roztoku, promíchá a přiděl 10 ml reagenčního roztoku a opět promíchá. Musí se vždy dodržovat poměr 2:3 [1], cile základního a absorpcního roztoku: 2 dílů reagenčního roztoku]. Tato re- akce může sloužit i ke kvalitativnímu zjišťování přítomnosti SO₂ a oveření, zda chmel byl či nebyl sříšen.

Informační stanovení obsahu SO₂ u starších chmelů
K tomuto účelu se použilo chmele sříšeného (tabl. 1), jehož vzorek byl vyseknut z balíčku a chmelů nesříšeného, který byl směsi typových vzor- ků (tabl. 2). Zároveň se stanovil i obsah veškerého síry, tedy 1 tě, která je vázida v rozličně hmotě. Rostlinná hmota se spálila mokrou cestou. Výsledky stanovení jsou uvedeny v tabulcech 1 a 2.

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Obsah SO₂ %</th>
<th>Obsah veškeré S %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,008</td>
<td>0,006</td>
</tr>
<tr>
<td>2</td>
<td>0,009</td>
<td>0,011</td>
</tr>
</tbody>
</table>

Hodnoty vyjadřující procento SO₂ jsou zaokrouhleny. Z uvedených čísel je vidět, že obsah SO₂ u chmelů starších se pohybuje řádově okolo 0,008 %, u chmelů nesříšených o celý řadu míže a stříšeného zhruba 0,0002 %. Každá uvedená čísla je průměrem ze čtyř stanovení. Zdá se, že i u obsahu celkové sry, kde hlávky nesříšené mají opět nižší obsah v poměru k sříšeným. Kolsaté výsledky se pohybovej v průměru ±5 %.

Vliv doby stření na obsah SO₂ ve hlávkách chmelů
Vliv doby stření na obsah SO₂ ve hlávkách chmelů

<table>
<thead>
<tr>
<th>Pohledová síra</th>
<th>Obsah SO₂ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0,005</td>
</tr>
<tr>
<td>45</td>
<td>0,006</td>
</tr>
<tr>
<td>60</td>
<td>0,008</td>
</tr>
<tr>
<td>90</td>
<td>0,032</td>
</tr>
<tr>
<td>kontrola</td>
<td>0,0004</td>
</tr>
</tbody>
</table>

Závěr
Byla vypracována nová, přesná a rychlá metoda stanovení obsahu SO₂ ve hlávkách, která plně na- hrází dosud používanou obšírnější vážkovou me- todou.

Literatura

Došlo do redakce 19. 5. 1963.
СКОРОСТНОЙ МЕТОД ТОЧНОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ 
SO₂ В ХМЕЛЕВЫХ ПИЩАКАХ

Был разработан новый колориметрический метод определения содержания SO₂ в хмелевых пищаках, требующий меньше времени и дающий более точные результаты чем применяемый в настоящее время весовой анализ. Принцип описываемого метода заключается в цветной реакции абордционного раствора содержавшего SO₂ и фуксин-формальдегида. Метод отличается высокой чувствительностью и дает возможность определять незначительные количества SO₂.

SCHNELLE UND EXAKTE METHODE
ZUR FESTSTELLUNG DES
SO₂-GEHALTS IN HOPFENDOLDEN

Es wurde eine kolorimetrische Methode zur SO₂-Bestimmung in Hopfen ausgearbeitet, die schnell und genau als die bisher benützte gravimetrische Methode ist. Das Prinzip der kolorimetrischen Methode besteht in der Farbreaktion der SO₂-haltigen Absorptionslösung mit der Fuchsin-Formaldehyd-Reagens. Der neue Methode ist sehr empfindlich und ermöglicht die Feststellung von bis 0,5 Gamma SO₂.

TIME SAVING, ACCURATE METHOD 
FOR DETERMINING SO₂ CONTENT 
IN HOP CONES

A new colorimetric method has been elaborated for determining SO₂ in hop cones. The method is more time saving and accurate than weighing analysis which is now chiefly used. The principle of the suggested new method is in a colour reaction between an absorbing solution containing SO₂ and fuchsine-formaldehyde reagent. The method is extremely sensitive and permits to determine very small quantities of SO₂ present in the investigated material.