Technologické parametre výroby červených vín v ČSSR

Ing. A. NAVARA, CSc. - Ing. O. JUNGOVÁ - Ing. J. KRAMPL

Sortiment modrých odrůd v naší republice je poměrně široký, lebo jsou to prakticky tři hlavní odrůdy, které jsou v jednotlivých vinohradnických oblastech, alebo jenom v nej menších množstvích odrůdy: Burgundské modré, Cabernet Sauvignon, Jakubské a Kadarka modrá.

Rozsah ploch vysadených modrými odrůdami je významný v tab. 1.

Z údajů tabulky vyplývá, že najvýznamnejší pesticid je Portugalské modré 3,94 %, což představuje výsadu plochy 774,7 ha. Potom je to Frankovka modrá, 3,25 %, což predstavuje 638 ha. Vysadka Portugalského modrého 2,28 %, což predstavuje 449,4 ha.

Tabuľka 1. Percenta a výsmera výsadok modrých odrôd v ČSSR

<table>
<thead>
<tr>
<th></th>
<th>Frankovka m.</th>
<th>Vavriavské</th>
<th>Portugalské m.</th>
<th>Burgundské m.</th>
<th>Kadarka m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovensko</td>
<td>3,50, 467,00</td>
<td>0,95</td>
<td>127,3</td>
<td>4,94, 500,7</td>
<td>1,36, 183,25</td>
</tr>
<tr>
<td>Morava</td>
<td>2,00, 171,00</td>
<td>4,78</td>
<td>291,4</td>
<td>3,99, 243,3</td>
<td>0,59, 53,92</td>
</tr>
<tr>
<td>Čechy</td>
<td>—, —</td>
<td>1,59</td>
<td>30,7</td>
<td>1,59, 30,7</td>
<td>5,86, 11,30</td>
</tr>
<tr>
<td>ČSSR</td>
<td>3,25, 638,0</td>
<td>2,28</td>
<td>449,4</td>
<td>3,94, 774,7</td>
<td>1,67, 328,47</td>
</tr>
</tbody>
</table>

Zrcadlo procesu a jeho parametry

Z hlediska výroby červených vín pocházejí z nejzajímavějších, kvalitních kvasničních šťáv obsahu vín, obsahu antokyánových farbí a obsahu kyselín. Početní četnost hladin strávky buňek sa neví, že proporčně zvyšuje se porostu červených vín. Bývá to uváděno 15. až 20. augusta. Zelené buněčné obsahy 9–10 g/čuvku (glukoza + fruktóza), kyselin ax 61–69 g/čuvku. Toto šťava zelených buněk obsahuje 6,1–9,9 % kyselin (kyselina jablčná + kyselina vinna + kyselina citronová) a len 0,9–1,9 % cukrů. Počas vyvražování buňek sa obsah cukrov podstatně zvyšuje (tab. 2) pričom obsah cukrov klesá, je to typický znak zrení plodov odrad Vitis vinifera. Modré odrady produkujú z určitých alebo rendered množstva naskumulovaného cukru antokyánovej farbí.

Tabulka 2. Obsah cukru, kyselín, antokyánové počet různých modrých odrad

<table>
<thead>
<tr>
<th>Datum odchoru vín</th>
<th>Cukr [g/čuvku]</th>
<th>Kyseliny [g/čuvku]</th>
<th>Antokyány [mg/g x k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankovské</td>
<td>1. augusta</td>
<td>11,0</td>
<td>69,0</td>
</tr>
<tr>
<td></td>
<td>8. augusta</td>
<td>29,0</td>
<td>62,6</td>
</tr>
<tr>
<td></td>
<td>15. augusta</td>
<td>45,0</td>
<td>50,8</td>
</tr>
<tr>
<td></td>
<td>22. augusta</td>
<td>75,0</td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>29. augusta</td>
<td>136,0</td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>5. septembra</td>
<td>100,0</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td>12. septembra</td>
<td>100,0</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>19. septembra</td>
<td>100,0</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td>26. septembra</td>
<td>192,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>3. októbra</td>
<td>195,0</td>
<td>8,8</td>
</tr>
<tr>
<td></td>
<td>10. októbra</td>
<td>299,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Červenokorčové</td>
<td>1. augusta</td>
<td>11,0</td>
<td>69,0</td>
</tr>
<tr>
<td></td>
<td>8. augusta</td>
<td>29,0</td>
<td>62,6</td>
</tr>
<tr>
<td></td>
<td>15. augusta</td>
<td>45,0</td>
<td>50,8</td>
</tr>
<tr>
<td></td>
<td>22. augusta</td>
<td>75,0</td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>29. augusta</td>
<td>136,0</td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>5. septembra</td>
<td>100,0</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td>12. septembra</td>
<td>100,0</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>19. septembra</td>
<td>100,0</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td>26. septembra</td>
<td>192,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>3. októbra</td>
<td>195,0</td>
<td>8,8</td>
</tr>
<tr>
<td></td>
<td>10. októbra</td>
<td>299,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Portugalské</td>
<td>1. augusta</td>
<td>19,0</td>
<td>61,0</td>
</tr>
<tr>
<td></td>
<td>8. augusta</td>
<td>23,0</td>
<td>54,0</td>
</tr>
<tr>
<td></td>
<td>15. augusta</td>
<td>30,0</td>
<td>99,0</td>
</tr>
<tr>
<td></td>
<td>22. augusta</td>
<td>38,0</td>
<td>32,0</td>
</tr>
<tr>
<td></td>
<td>29. augusta</td>
<td>63,0</td>
<td>40,0</td>
</tr>
<tr>
<td></td>
<td>5. septembra</td>
<td>94,0</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td>12. septembra</td>
<td>130,0</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>19. septembra</td>
<td>163,0</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td>26. septembra</td>
<td>170,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>3. októbra</td>
<td>172,0</td>
<td>7,9</td>
</tr>
<tr>
<td></td>
<td>10. októbra</td>
<td>188,0</td>
<td>9,6</td>
</tr>
</tbody>
</table>

které sa nacházejí v povrchových banskách špúky. Szintéza antokyánov sa začína až vody, keď bunečné šťavy obsahujú prahové množstvá glukozy a fruktózy. Náhra [2] zistí, že toto prahové množstvá cukrov a následných modrých odrad sa 30–40 g/čuvku. Najintenzívnejší počaz kyselín je v intervale od 1. augusta do 12. septembra, kde je najintenzívnejší akumulácia cukrov v bobuľových banskách. V tomto čase obsah cukru dosahuje hodnoty 180–180 g/čuvku. Ako sme uviedli, u modrých odrad sa akumulácia cukrov je smerová akumulácia antokyánových farbí. Na konci zrezeného procesu 1. – 10. októbra bobuľové šťavy obsahujú 175–200 g/čuvku cukru, 6,8–9,0 g/čuvku kyselín a 30,8–34,4 mg/g x k. antokyánových farbí.

Podľa našich viacročných výskumov sa skúsenost je možné uveďť, že ak encikulácia antokyánových farbí sa 3 fáz:
 1. fáza pripravov (1.–22. august),
 2. fáza lineárnej akumulácie (22. august – 10. október),
 3. fáza stagnácie akumulácie (10. október).

Z hľadiska technologického je dojdezváť sa druhá fáza nakoľko obsah antokyánových farbí sa zvyšuje priam lineárne. V prípade prílišného prísuzovania bobuť sa obsah antokyánových farbí nielenže sa nevyzýva, ale môže mať až ich degradáciu.

Podľa obsahu cukrov, antokyánových farbí a kyselín možno spomenúť objektívne určiť čas zverej mych modrých odrad.

Nakvasovací proces a jeho parametry

Vzhľadom na to, že v jednotlivých rozhodciach je cukernosť mušťov rozdielna a zpravidla nedostačuje na dosiahnutie žiadanej koncentrácie etyalkoholu v mladých vínach, je nutné príde vach sa zaradzuje zvyšť obsah cukrov a smieť pridávania suťodných procesích. Pridávanie suťodných pre zvyšovanie cukru a intenzity farbí je možné s diapazonom od 5–10 g/čuvku.

Frankovská modrá: Skvasovanie cukru začína okamžite v počas spracovania. Zvyšenie intenzity kvasového procesu aplikáciou zvyšovať bohučnými sulfidnými kmeňmi vínnych kvasišiek sa prejavuje v tom, že na konci prvých dňa nakvasovania mušť obsahuje až 4,2 obj. % etyalkoholu, pričom obsah trislovin je 0,3 g/l a obsah antokyánov 80 mg/l. Sprievodne sa znižuje obsah cukru na 155 g/l.

Přírastově podmínky kvasového procesu, ale najmä pridávání zvyšovanie kvasového sulfidným kmeňem. Zvyšovanie cukru a intenzity farbí je možné s diapazonom od 5–10 g/čuvku.

V ďalších dňoch nakvasovania obsah alkoholu sa zvyšuje pozitívne, čo je prejav dokvasovania. Sprievodne sa zvyšuje obsah cukru na 122 obj. % etyalkoholu, z čoho výstupná intenzita farbí je 9,0 obj. % extrachný čínok etanolu na antokyány a trisloviny je markantný.
Obsh antibakteriálních v 10. dně nakvakování dosahuje 780 mg/l a obsah trišlovínu 2,5 g/l. Z uvedených parametrů bylo možno kontrolovat a riadiť stupeň extrakcie, antibakteriálního rostlinnýho preparátu, a tak určiť objektivným spôsobom čas ukončenia nakvakovania a stanoviť termín lišovania a súťažia mladých vin [6, 7]. Optimalizácia chemického parametra pre mladé vína odrôdy Frankovka modrá po lišo

<table>
<thead>
<tr>
<th>Údaj vina</th>
<th>Frankovka modrá</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4. 5. 6. 7. 8. 9. 10</td>
<td>2. 3. 4. 5. 6. 7. 8. 9. 10</td>
</tr>
<tr>
<td>cukor [g/l]</td>
<td>199,0 155,0 102,0 58,0 28,0 17,0 9,0 5,0 3,0 2,0</td>
</tr>
<tr>
<td>alkohol [ob. %]</td>
<td>4,3 9,8 11,3 11,4 11,6 11,8 12,0 12,3 12,5 12,7</td>
</tr>
<tr>
<td>trišlovín [g/l]</td>
<td>0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2</td>
</tr>
<tr>
<td>antibakteriálny [mg/l]</td>
<td>20,0 66,0 199,0 366,0 230,0 213,0 178,0 153,0 130,0 108,0</td>
</tr>
<tr>
<td>extrakt viatík [g/l]</td>
<td>238,0 133,0 148,0 185,0 60,0 49,0 38,0 37,0 30,0 30,0</td>
</tr>
<tr>
<td>extrakt bez cukru [g/l]</td>
<td>27,0 32,0 34,0 36,8 39,0 39,0 39,0 39,0 39,0 39,0</td>
</tr>
<tr>
<td>kyselina vinylová [g/l]</td>
<td>16,0 9,9 8,6 9,0 9,0 9,0 9,0 9,0 9,0 9,0</td>
</tr>
<tr>
<td>kyseliny preháve [g/l]</td>
<td>0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Údaj vina</th>
<th>Světovinníček</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4. 5. 6. 7. 8. 9. 10</td>
<td>2. 3. 4. 5. 6. 7. 8. 9. 10</td>
</tr>
<tr>
<td>cukor</td>
<td>211,0 172,0 145,0 69,0 30,0 15,0 4,0 4,0 3,0 2,0</td>
</tr>
<tr>
<td>alkohol</td>
<td>8,9 4,5 6,0 10,0 11,7 11,6 11,6 12,0 12,0 12,0</td>
</tr>
<tr>
<td>trišlovín</td>
<td>0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2</td>
</tr>
<tr>
<td>antibakteriálny</td>
<td>38,0 89,0 165,0 155,0 196,0 266,0 298,0 460,0 546,0 669,0</td>
</tr>
<tr>
<td>extrakt viatík</td>
<td>239,0 193,0 166,0 105,0 60,0 40,0 30,0 37,0 36,0 35,0</td>
</tr>
<tr>
<td>extrakt bez cukru</td>
<td>26,0 33,0 29,0 30,0 49,0 41,2 38,0 35,0 33,0 33,0</td>
</tr>
<tr>
<td>kyseliny vinylové</td>
<td>11,0 11,0 10,0 10,0 9,8 9,8 9,6 9,6 9,6 9,6</td>
</tr>
<tr>
<td>kyseliny preháve</td>
<td>0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Údaj vina</th>
<th>Portugalské</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4. 5. 6. 7. 8. 9. 10</td>
<td>2. 3. 4. 5. 6. 7. 8. 9. 10</td>
</tr>
<tr>
<td>cukor</td>
<td>280,0 163,0 140,0 136,0 77,0 19,2 4,9 5,2 5,2 5,2</td>
</tr>
<tr>
<td>alkohol</td>
<td>6,0 2,3 7,2 9,8 12,0 11,8 11,7 11,7 11,7 11,7</td>
</tr>
<tr>
<td>trišlovín</td>
<td>0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2</td>
</tr>
<tr>
<td>antibakteriálny</td>
<td>60,0 76,0 110,0 125,0 183,0 250,0 298,0 386,0 530,0 669,0</td>
</tr>
<tr>
<td>extrakt viatík</td>
<td>215,0 193,0 160,0 152,0 108,0 49,6 38,3 36,3 37,0 35,2</td>
</tr>
<tr>
<td>extrakt bez cukru</td>
<td>25,0 38,0 35,0 32,9 35,0 35,5 35,5 35,5 35,5 35,5</td>
</tr>
<tr>
<td>kyseliny vinylové</td>
<td>8,0 8,1 7,9 7,9 7,8 7,6 7,4 7,3 7,3 7,3</td>
</tr>
<tr>
<td>kyseliny preháve</td>
<td>0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2</td>
</tr>
</tbody>
</table>

Z technologických parametrov vidíme, že nakvakovací proces mišťa Frankovky modré postupoval veľmi príaznivo, najmä extrakt antibakteriálny, trišlovín a látok extraktivých. Uvedené parametre podľa niadších viac

| Údaj vina | \(\text{Organických kyselín}, učiníť celkovej kyseliny, sú veľmi dobre kvality a majú výrazný odrodný charakter. |

Portugalské kyseliny: Rozkvasené hmoty v druhom dni, obsahujú 2—3 obj. % etanolu a jeho tvorba sa zintenzívna

extrakciou trišlovínu a antibakteriálny rostlinný preparát v deviatom dni nakvakovania bol obsah trišlovín 1,9 g/l a antibakteriálny 860 mg/l. Vzhľadom k tomu, že v 9. a 10. dni nakvakovania obsah alkoholu a trišlovínu sa nezvyšuje a aj obsah antibakteriálny rostlinný preparát, nažehlo technologického za ukončený. Podľa toho po 5. dni nakvakovania sa realizuje lišovanie. Ako iba príde

extrakciou trišlovínu, kyselina vinylová, kyseliny preháve využitie na kvalitu červených vína. Nakvakovací proces sa realizuje za príp.

V 8. dňa nakvakovania, kedy sa podmenok, v ktorých sa môže zvyšiť činnosť oxidácnej, s ktorou sú postihované najmä antibakteriálny, trišlovín a aromatické štyky. Z týchto hľadiska možno aj prvé dni nakvakovania označiť za najdôležitejšie v nakvakovacom procese, najmä vedy, keď je pomáhať tvorba etylalkoholu.

Nakvakovací proces treba ukončiť tak, aby mladé vína mali tieto chemické parametre:

<table>
<thead>
<tr>
<th>Údaj vina</th>
<th>Portugalské</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4. 5. 6. 7. 8. 9. 10</td>
<td>2. 3. 4. 5. 6. 7. 8. 9. 10</td>
</tr>
<tr>
<td>cukor</td>
<td>11,8 — 12,0 obj. %</td>
</tr>
<tr>
<td>alkohol</td>
<td>2,0 — 2,5 g/l</td>
</tr>
<tr>
<td>trišlovín</td>
<td>0,3 — 0,5 g/l</td>
</tr>
<tr>
<td>procháv kyseliny</td>
<td>2,2 — 2,5 g/l</td>
</tr>
<tr>
<td>antibakteriálny</td>
<td>620,0 — 760,0 mg/l</td>
</tr>
<tr>
<td>extrakt viatík</td>
<td>260,0 — 660,0 mg/l</td>
</tr>
<tr>
<td>extrakt bez cukru</td>
<td>33,0 — 33,2 g/l</td>
</tr>
</tbody>
</table>

Nakvakovací proces pri výrobe červených vína odrôd Frankovka modré, Světovinníček a Portugalské modré má byť realizovaný v časovom intervalu 9—11 dňa za podmienok použitia sťahovať do vyššieho kmeňa kvasínok
Hlínik I. Obsah alkoholu má dosahovat hladinu 11,5 až 12,5 obj. %.

Vylisované víno je nutné egzalizovat so samotokom, aby čerstvé víno obsahovalo vyvranené množstvá všetkých komponent, najmä organické kyseliny, antimykany a trieloviny. Optímne množstvo trislovin u týchto odrůd je v intervalu 1,8 až 2,6 g/l a obsah antykánov 600 až 800 mg/l.

Mladé víno odrôdy Portugalskéj modrých obsahuje menej kyselin a trislovin, najmä v kvalitných ročníkoch, a preto je potrebné zber riaditeľ podľa obsahu kyselín. Mladé víno je nutné obrotovať s SO₂ tak, aby stále obsahovalo 25 až 30 mg/l voľného SO₂.

Literatúra
2. NAVARA, A.: Výskum antykánových pigmentov v procese zre- núnia modrých odrôd vína banských pěstovanej. ČSSR. SAV, Bratislava 1986
3. DURMÝŽOVÁ, S. V.: Dubňový víno a vína s bohatou porcovanou kvalitou. Praha 1965

V práci sa uvedené chemické parametre pre výrobu červených vína v ČSSR, podlaých parametrov je možné objektívne riadiť prvá dva fázy výroby červených vína.

Pre prvé fazu — zrejme bola — sa doporučuje časovo sledovať obsah cukrov, kyselin a antykánových pigmentov, podľa ktorých sa určí doba zberu.

Druhá fáza — nakvasovanie procesu — sa najdôležitejšej je v celej technológie červených vína vyvážať časové sledo- vanie (24 hod. intervale) obsahu cukrov, alkoholu, antykánov, trislovin a príchvateľných kyselin.

Zo získaných parametrov možno objektívne riadiť dorů- šanie. Nakvasovanie proces modrých odrôd je nutné realizovať v časovom intervali 9—11 dňa, aby podmienky aplikácie zázraku výhodných kmenov kvasinek odpovedali na SO₂. Obsah alkoholu má dosahovať v mla- đých víno hladinu 11,5—12,5 obj. %, Vylisované víno sa egzalizovat s samotokom tak, aby obsahovali 1,8—2,6 g/l trislovin; 600—800 mg/l antykánov; 0,3—0,5 g/l príchvateľných kyselin; 30—35 g/l celkového extraktu a 25—30 g/l voľného SO₂.

V pracu prísťažné chemicke Parameter pre prí- vodstvo červených vín v ČSFR, podlaich parametrov je možné objektívne riadiť prvým dva fazami prí- vodstva červených vín.

V prvej faze — zrejmedaj — je doporučené obmedziť v nesloňu vyvážať obsah cukrov, kyselin a antykánových pigmentov. Po týmto parametre je určovať dátum zbera vína vinníka.

Vo druhej faze — procesu vinného smiešania — je doporučené obmedziť v príprave čerstvého vína, najmä v kvalitných ročníkoch, a preto je potrebné zber riaditeľ podľa obsahu kyselín. Mladé víno je nutné obrotovať s SO₂ tak, aby stále obsahovalo 25 až 30 mg/l voľného SO₂.

Na podstawie tychże danych można objektynie docelnie wy- riądzić pierwszą fazę produkcji wina. W procesie wijników ma się docelnie wybić na podstawie kwasów, cukrów, antimykantów i trielowin. Dla parametru tym jest określana data szeleby winogrona.

W drugiej faze — procesu wijników — jest zalecane obmedzić w wyrównaniu czynników, tak aby obsadziły 1,8 až 2,6 g/l trielowin; 600 až 800 mg/l antimykantów, 0,3 až 0,5 g/l wychwytwanych kwasów; 30 až 35 g/l wyciągu całkowitego a 25 až 30 g/l wlocznego SO₂.

Aus den gewonnenen Parametern kann die Zeitpunkt der Bestimmung der Zeitpunkt der Herstellung bestimmt werden. Der Angängungs- prozess von Rotweisen muss in einem Intervall von 9 bis 11 Tagen verlaufen, wobei die Heranzüchtung von SO₂-resistenten Weihen als wünschenswert erscheint. Der Alkoholgehalt soll bei Jungwein 11,5 bis 12,5 Vol. % betragen. Die gekelterten Weine werden mit dem Vorlauf so vereinzelt, dass sie 1,8 bis 2,6 g/l Gerbstoff, 600 bis 800 mg/l Anthocyane, 0,3 bis 0,5 g/l flächige Säuren, 30 bis 35 g/l Gesamtextrakt und 25 bis 30 mg/l freien Schwefeldioxid enthalten.