Stanovenie stupňa hydrolýzy lignocelulózových materiálov termofilnými bakteriami

Ing. DARIA LONGAUEROVÁ, CSc., Doc. Ing. DUŠAN HALAMA, CSc., Chemickotechnologická fakulta SVŠT v Bratislave, Katedra biochemickej technológie, Ing. VLASTA LUŽÁKOVÁ, CSc., Katedra textilu, celulózy a papiera

Kľúčová slova: hydrolýza, kultivácie, lignocelulózové materiály, hemicelulóza, termofilná bakterie, kukuřice, gelová permeačná chromatografia, sacharidy.


Overili sme použiteľnosť tejto metódy a rozšírili jej aplikáciu na lignocelulózové materiály so zanedbateľnou nutričnou hodnotou (drevené štiepky, kukuričné oklásky, slama). Inokulum z bachoro- rového obsahu sme nahradili zmesnou termofilnou bakteriálnou kultúrou [2]. Súčasne sme preskúmali možnosť recyklikácie tekutej fázy, vý- sledkom čoho bola navrhnutá bezodpadová technológia využitia lignocelulózových materiálov mikrobiologickou cestou ([3], obr. 1).


Zameráli sme sa preto na hlbšie preskúmanie procesu odbúrania lignocelulózového materiálu, a to: 1. sledo- vaním odbúrania hemicelulóz chemickou analýzou, 2. po- užitím GPC (gelová permeačná chromatografia) analýzy pri štúdiu zmien distribúcie molekulových hmotností polysacharidového zbytku po fermentácii drte kukuričných okláskov.

Doposiaľ nie je uzavretá otázka spôsobu odbúrania celulózového podiela v príbehu enzymovej hydrolýzy, či celulázy utilizujú prednostne alebo výlučne amorfný podieli alebo aj kryštalický podiel, či odbúranie polysacharidov prebieha štatisticky. Mnohí autori považujú za li-

Obr. 1. Bezodpadové spracovanie fytomasy

Materiál a metody


Analytické metody: Hemicelulozy sa stanovili po kysielke hydrolize povzoru zyskane ako redukujuci laky podla Schoorla. Hydroliza sa robila s 1% HCl pri 100°C v 10min. sobom nadbytku; kukurucne oklasky 1 hodiny a drevne štiepky 2 hodiny. Sledovali sme % utilizace takto stanovitých sacharidov.

Distribucia molekulovych hmotností a kukurucnych oklaskov sa sledovalaGPC analizou na prístroji AL/GPC firmy Watters, model R-401. Štyri nerezolované kolony o vnutornom priemere 0,775 cm a dĺžke 60 cm bol napnené Styragelem s využívanim limitom 10^-3 m a zrastosti 3,7-7,5 nm. Rychlosť prietoku bola 1 ml.min^-1. Vzorky sa nitrovali a rozpuštili v eluenti tetrahydrofurane, resp. sa upevnil podiel pred nitracou delignifikov.

Výsledky a diskusia


GPC analýzou roztokov nitrátov vzoriek kukurucnych oklaskov pred a po fermentácii sme získali príslušné elučné krvivky (obr. 4), ktoré reprezentujú distribúciu molekulových hmotností v sledovaných vzorkoch. Z priebehu elučnych kriviek je zrejmé, že v všetkých skúmaných vzoriek sa jedná o polydispersný systém so širokou distribúciou molekulových hmotností. Krivka A reprezentuje pôvodné kukuřičné oklasky má výrazne bimodalný charakter s vysokomolekulovým podielom v oblasti 40-75 ml elučného objemu, s maximom priemerného polymezačného stupňa (PPS) v oblasti hodnôt 370 a s níz-

Obr. 2. Redukčné laky (po hydrólizes) v priebehu anaerobnej termofilnej fermentácie lignocelulózowych materiakov zmesne bakterialnou kulturou
drevne štiepky (40 g-1^-1), fosťatový timivý roztok o pH 8,8 a NH4Cl + % tekutej fazy po anaeróznej fermentáci

Obr. 3. Redukčné laky (po hydrólizes) v priebehu anaerobnej termofilnej fermentácie lignocelulózowych materiakov zmesne bakterialnou kulturou

cukurové oklasky (40 g-1^-1), fosťatový timivý roztok + NH4Cl + % tekutej fazy po anaeróznej fermentáci, pH 8,8

Obr. 4. Elučné krvivky získané GPC analýzou kukurucnych oklaskov

Fermentácia: cukurové oklasky (40 g-1^-1), fosťatový timivý roztok + NH4Cl, pH 8,8, teplota 60°C, 6 dni

A — pred fermentáciou delignifikovaná, po nitrácii rozpuštena v tetrahydrofurange na 100 %
B — po fermentácii nesporulovanou kulturou, po nitrácii rozpuštena v tetrahydrofurange na 60 %
C — po fermentácii sporulovanou kulturou, po nitrácii rozpuštena v tetrahydrofurange na 45 %
komolekulovým podielom tvoreným oligomernými zložkami v oblasti 85—110 ml elučného objemu. U oboch vzoriek (krivka B a C) po fermentácii sa v oblasti najvyšších molekulových hmotnosťí, resp. PPS vysokomolekulového podielu objavilo maximum M1, resp. M2, pričom súčasne došlo k posunu maxima vysokomolekulového podielu k nižším hodnotám PPS.

Z výsledkov GPC analýzy skúmaných vzoriek možno usudzovať, že došlo k degradácií oligomerných zložiek, čo vyplýva z posunu príslušného maxima elučných kriviek B a C k nižším hodnotám PPS ako aj k celkovému úbytku oligomerných sacharidov v pevnom zbytku. V prípade termostífnej anaerobnej fermentácie drte kukuričných oklások sa degradoval aj vysokomolekulový polysacharidický podiel, pričom jeho malá časť reprezentovaná pôkm M1, resp. M2 sa nemenila.

Literatúra


Nahromadené zmesné kultúry termostífnych anaeróbných baktérií boli kultivované pri 60°C na kukuričných okláskoch vo fosfátovom tli a roztoku o pH 6,8. Gévlovou permeačnou chromatografiou sa zistila, že po 6 dňoch kultivácie bola váčšina oligomerných sacharidov utilizovaná a čiastočne došlo aj k degradácii vysokomolekulového sacharidického podielu. Hemimelulózy (stanoené ako reduzujúce sacharidy po čiastočnej hydrolýze) boli z váčšej časti utilizované. Pevný zvýšok po termostífnej fermentácii má váčšiu akcesibilitu (v porovnaní pred fermentáciou) voočí zmesnej bachorovej mikroflóre.


Angehäufte Mischkulturen thermophiler anaerob Bakterien wurden bei 60°C auf Maiskleien in hemmender Phosphatlösung mit pH 6,8 kultiviert. Mittels Gel-Permeationschromatographie wurde festgestellt, daß nach 6 Tagen Kultivation der überwiegende Teil der oligomeren Sacharide utilisierung war und es verlief teilweise auch die Degradation des hochmolekularen sacharidischen Anteils. Die Hemimelulózen (die als reduzierende Saccharide nach teilweiser Hydrolyse bestimmt wurden) waren grösstenteils utilisierung. Der feste Rückstand nach der thermophilen Fermentation weist eine höhere Akzessibilität (im Vergleich vor der Fermentation weist eine höhere Akzessibilität (im Vergleich vor der Fermentation) gegenüber der Pansen-Mischnkroflora auf.