Acidotolerantní kmen Candida boidinii 2
utilizující methanol - vlastnosti a složení biomasy

RNDr. OLGA VOLFOVÁ, CSc., Ing. MIROSLAVA KMENTOVÁ, Ing. EVA KYSLÍKOVÁ, CSc. Mikrobiologický ústav ČSAV, Praha

Kličová slova: Candida boidinii, methanol, kyselina mračenčí, biomasa, esenciální aminokyseliny, acidotolerantní mikroorganismus

Acidotolerantní kmen Candida boidinii 2 (Volfovi et al., Pat. ČSSR) byl získán z rodičovského kmene C. boidinii 118b (Volfovi a Pilát 1974) pomocí selekčních tlaků kyseliny mračenčí a nízkého pH médií v chemostatu při limitaci růstu methanolem.

Nový kmen, na rozdíl od rodičovského kmene, jedná o organismus schopný nehradit v médiích při vyšších zdrojových rychlostech D > 0,1 h⁻¹ kyselinu mračenčí, která inhibovala jak růst buněk tak i aktivitu prvního oxidaceho enzymu v metabolismu methanolu, tj. alkohol oxidázy (Volfovi, 1980), a nedovolato a maximálně růstové parametry a optimální složení buněk při nízkých pH médií 3,0 (tabl. 1). Z grafu je patrné, že kmen roste v chemostatu v širokém rozmezí pH 2,8 až 4,2 s maximálním výživnostním koeficientem V 40 % (g/g). Mírný pokles V zaznamenáme až při zvýšení pH nad 4,2. Současně dochází k měrnému poklesu koncentrace buněk a naopak ke zvýšení zbytkového methanolu v médiích. V grafu jsou dále vyneseny hodnoty hrubých buněčných bílkovin, kterých buněky obsahují až 60—85 % (stanoveno jako dusíkaté látky) podobně jako 30 % kyseliny ribonukleové. Obsah kyseliny desoxyribonukleové se pohybuje v buňkách maximálně do 0,3 % (g/g).

Biomasa acidotolerantního kmene získaná z chemostatu o objemu 70 l při limitaci růstu methanolem je bohatá na esenciální aminokyseliny (tabl. 2) a vitaminy skupiny B (tabl. 2).

V tabulce 1 jsou uvedeny hodnoty aminokyselin přepočtené na obsah N látě v suché biomase, neboť jsem zjistil, že obsah bílkovin závisí na způsobu vedení kultivace. V tabulce 1 jsou pro snadnější interpretaci uvedeny složení aminokyselin poporučené FAO pro krmné bílkoviny.

Z tabulky je patrné, že bílkoviny methanolových kvasnic jsou bohaté na esenciální aminokyseliny, především na lysin, leucin, threonin, fenylylanin a tyrosin, kterých bílkoviny obsahují více než doporučuje FAO. V obsahu sírých aminokyselin odpovídají bílkoviny kmene obsahu sírých aminokyselin v jiných kvasničních bílkovinách.

V tabulce 2 se poukazuje na vysoký obsah vitaminů B1, B2 a K. Biomasa kvasinek získaných z chemostatu při limitaci růstu methanolem obsahuje až desítky mohutné obsahy vitaminů B1, B2 a K, přičemž biomasa získaná ze zbytků methanolu obsahuje více vitaminů B1 a K než obsahuje jiné krmné kvasnice získávané z jiných surovin, jako z ethanolu nebo sulfítových výtlah.

Aminokyselina	Candida boidinii 2 g/100 g bílkovin	FAO
threonin | 4,74 | 2,8
valin | 3,83 | 4,2
methionin | 1,44 | 2,8
isoleucin | 3,52 | 4,2
leucin | 6,24 | 4,8
tyrosin | 2,68 | 2,8
fenylalanin | 4,99 | 2,8
histidin | 2,46 |
lysin | 6,29 | 4,2
kyselina asparagová | 10,76 | 7,9
serin | 4,85 | 11,0
kyselina glutamová | 12,09 |
prolin | 4,43 |
cystin | 0,56 |
glycin | 4,03 |
o-alanin | 5,17 |
arginin | 5,01 |

Analýza aminokyselin provedena ve vořeř uhlířeře v průběhu 5

Tabulka 1. Složení aminokyselin v bílkovinách acidotolerantního kmene Candida boidinii 2 získaných z chemostatu při limitaci růstu methanolem

V tabulce 2 je zobrazena vysoká koncentrace vitaminů B1, B2 a K. Biomasa kvasinek získaných z chemostatu při limitaci růstu methanolem obsahuje až desítky mohutné obsahy vitaminů B1, B2 a K, přičemž biomasa získaná ze zbytků methanolu obsahuje více vitaminů B1 a K než obsahuje jiné krmné kvasnice získávané z jiných surovin, jako z ethanolu nebo sulfítových výtlah.

Vitamín	mg/100 g suché biomasy
thiamin | 18,3
riboflavin | 30,8
vitamin B6 | 1,6
niacin | 110,0
kyselina pantotenová | 2,7

Vitamín	mg/100 g suché biomasy
vitamin B3 | 1,4
folacin | 303,0
biotin | 10,7

Analýza vitaminů provedena ve Výzkumném ústavu potravinářského průmyslu v Praze 5

Závěrem lze konstatovat, že získávání kvasniční biomasy z methanolu pomocí acidotolerantního kmene C. boidinii 2 je významné jak z hlediska vedení kultivace, neboť je možné při nízkém pH médií větší fermentační proces semistabilní až nestabilní a tím snížit náklady na energii procesu, tak z hlediska složení biomasy. Biomasa kvasinek C. boidinii 2 získaná na methanolu představuje nejen hodnotu krmných bílkovin, ale zemědělskou hodnotu vitamín-aminokyselinových krmných látek.

Literatura

[3] Pat. ČSSR PV 7818-87

Lektoroval Doc. Ing. Dušan Halama, CSc.

Acidotolerantní kmen C. boidinii 2 byl získán z rodickovského kmene č. 11Bh pomocí selekčních tlaků kyseliny mravenčí a nízkého pH média. Kmen roste v chemostatu při limitaci růstu methanolom s maximálním výtěžnostním koeficientem 40 % a obsahem hrubých bílkovin 60—65 % v širokém rozmezí pH 2,8—4,2. Biomasa je bohatá na vitamíny skupiny B, především na B₂ (39,8 mg/100 g) a B₁ (18,3 mg/100 g). Bílkoviny jsou bohaté na esencální aminokyseliny lysin (6,3 %), leucin (6,2 %), threonin (4,7 %), fenylalanin (4,9 %) a tyrosin (3,9 %).

Acidotolerant strain C. boidinii 2 was obtained from the parental strain n. 11Bh by selection pressures of formate and low pH of medium. Strain is growing in methanol-limited chemostat with maximum yield coefficient 40 % and content of rough proteins 60—65 % in a wide area of pH 2,8—4,2. The biomass is rich in vitamins of B group, mainly in B₂ (39,8 mg/100 g) and B₁ (18,3 mg/100 g). The proteins are rich in essential aminoacids lysine (6,3 %), leucine (6,2 %), threonine (4,7 %), phenylalanine (4,9 %) and tyrosine (3,9 %).

Der säuretolerante S.amm Candida boidinii 2 wurde aus dem Elternstamm durch Selektionsdruck der Ameisen säure und des niedrigen Medium-pH gewonnen. Der Stamm wächst im Chemostat bei Limitation des Wachstums durch Methanol mit einem maximalen Ausbeutekoeficient 40 % und Gehalt an Grobweiß 60 bis 65 % in einem breiten pH-Bereich 2,8 bis 4,2. Die Biomasse ist reich auf Vitamine der B-Gruppe, vor allem B₂ (39,8 mg/100 g) und B₁ (18,3 mg/100 g). Die Eiweißstoffe sind reich an essentialen Aminösäuren Lysin (6,3 %), Leucin (6,2 %), Threonin (4,7 %), Phenylalanin (4,9 %) und Tyrosin (3,9 %).