Kvasny Prum. 2003; 49(7-8): 191-199 | DOI: 10.18832/kp2003015

Basic Principles of Malting Barley Breeding (part 2).Peer-reviewed article

Ivan LANGER
SELGEN, a. s., Šlechtitelská stanice Stupice, 250 84 Sibřina

The article sums up current knowledge of malting barley breeding work. The first part is, except of the brief description of barley Hordeum vulgare ssp. vulgare, its genetics and chromosomal map, focused on the process of selection work. Historical and currently used conventional methods are described (pedigree, population, combined population- pedigree, and early testing method) with their advantages and negative sides. The second part of the article first deals with the selection strategy for individual characters (yield, agricultural qualities, disease resistance, malting quality). Each feature is briefly described and an appropriate method of selection is given. It is followed by the description of modern methods of breeding work based on molecular genetics (molecular markers and transgenose utilization).The article sums up current knowledge of malting barley breeding work. The first part is, except of the brief description of barley Hordeum vulgare ssp. vulgare, its genetics and chromosomal map, focused on the process of selection work. Historical and currently used conventional methods are described (pedigree, population, combined population- pedigree, and early testing method) with their advantages and negative sides. The second part of the article first deals with the selection strategy for individual characters (yield, agricultural qualities, disease resistance, malting quality). Each feature is briefly described and an appropriate method of selection is given. It is followed by the description of modern methods of breeding work based on molecular genetics (molecular markers and transgenose utilization).

Keywords: barley, breeding, quality

Published: July 1, 2003 

References

  1. Smith, D. C.: Plant breeding: Development and success. In: Frey, K. J. (ed.), Plant breeding, Iowa State University Press, Ames, Iowa 1966: s. 3.
  2. El Rabey, H., Salamini, F.: Domestication history of barley (H. vulgare) and phylogenetic relationships in the genus Hordeum. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia 2000, Vol. I.,s. 32.
  3. Lekeš, J.: Šlechtění obilovin na území Československa. Brázda, 1997, 279 s.
  4. FAO 2003: http://www.FAP.org.
  5. GRIN Database: http://www.ars-grin.gov
  6. Psota,V., Kosař, K.:Ukazatel sladovnické jakosti. Kvasny Prum. 48, 2002, s.142. Go to original source...
  7. Psota, V.: Komise pro hodnocení kvality odrůd sladovnického ječmene. Kvasny Prum 49, 2003, s.73. Go to original source...
  8. Anashenko, B. Z.: Estimation of parental value for varieties used in plant breeding. Plant Breeding 117, 1998, s.131. Go to original source...
  9. Nader-Mahmoudi, K., Haghparast, R.: Utilization of cluster and discriminant analysis for parents selection in barley. In: Al Slinkard et al. (eds.), VII. International Barley Genetics Symposium, University of Saskatchewan, University Extension Press 1996, Vol.2: s.538.
  10. Thomas, W. T. B., Ellis, R. P.: Cross prediction in winter barley. In: Munck, L. (ed.), VI. International Barley Genetics Symposium, Helsingborg, Muskgaard Int. Publishers, Copenhagen 1991, Vol. I.: s. 352.
  11. Weber, W. E.:Selektionsstrategien in der Getreidezüchtung, Kühn-Archiv 88, 1994, s.140.
  12. Sneep, J., Hendriksen, A.J.T.:Plant breeding perspectives.A simplified method of bulk and pedigree selection. PUDOC, Wageningen 1979 s.160.
  13. Broughton, S., Gilmour, R.F.: Production and utilisation of barley doubled haploids in the Western Australian Barley Improvement Program. In: Al Slinkard et al. (eds.), VII. International Barley Genetics Symposium, University of Saskatchewan, University Extension Press 1996, Vol.2 s. 461.
  14. Davies, P. A., Morton, S.: The relative efficiency of isolated microspore culture and anther culture for doubled haploid production. In: Al Slinkard et al. (eds.), VII. International Barley Genetics Symposium, University of Saskatchewan, University Extension Press 1996, Vol.2, s. 472.
  15. Pickering, R.A., Morgan, P.W.: Plant regeneration from cultured embryos derived from Hordeum vulgare L. pollinated with H. bulbosum L. Euphytica 32, 1983, s. 585. Go to original source...
  16. Hallauer, A. R.: Selection and breeding methods. In: Frey, K. J. (ed.), Plant Breeding II., Iowa State University Press, Ames 1979, s. 3
  17. Stoskopf, N. C., Reinbergs, E.: Breeding for yield in spring cereals.Canad.J.Plant Sci. 46, 1966, s. 513. Go to original source...
  18. Minařík, F.: Šlechtění na produkční potenciál. In: Ječmen, Státní zemědělské nakladatelství Praha, 1985, s.80.
  19. Stoy, V.: The storage and re-mobilization of carbohydrates in cereals.In:Crop physiology and cereal breeding. Eucarpia, PUDOC, Wageningen 1979, s. 55.
  20. Hay, R. K. M.: Harvest index: a review of its use in plant breeding and physiology. Annals Appl. Biol. 126, 1995, s. 197. Go to original source...
  21. Arnau, G., Monneveux, P.: Physiology and genetics of terminal water stress tolerance in barley. J. Genet. Breed. 49, 1995, s. 327.
  22. Karsai, I. et al.: Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breeding 120, 2001 s. 217. Go to original source...
  23. Karamanos, A.J., Papatheohari, A.Y.:Assessment of drought resistance of crop genotypes by means of the water potential index. Crop Sci. 39, 1999, s. 1792. Go to original source...
  24. Žofajová, A., Mužík, M.: Hodnotenie tolerancie odrod jarného jačmeňa voči nízkému pH pody. Polnohosp. výroba a skušobníctvo 5, 1997, s. 11.
  25. Brown, A. H. D. et al.: Wild barley (Hordeum vulgare ssp. spontaneum) as a source of disease resistance for barley breeding. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia 2000 Vol. I, s.56.
  26. Koga, H. et al.: Characteristic cellular responses as expression of genes for resistance to Erysiphe graminis f. sp. hordei in barley.Phytopathology 73, 1983, s.907. Go to original source...
  27. Pickering, R. A. et al.: The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2. Theoret. Appl. Genet. 91, 1995, s. 1288. Go to original source...
  28. Dreiseitl, A., Bockelman, H. E.: Investigation of the wild barley germplasm collection for powdery mildew resistance.In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia 2000, s. 72
  29. Vanderplank, J.E.:Specificity, interaction and additivity in host pathogen system. Plant Pathol. 37, 1988, s. 165. Go to original source...
  30. Newton, A. C., Andriavon, D.: Assumptions and implications of current gene-forgene hypotheses.Plant Pathol.44, 1995, s. 607. Go to original source...
  31. Skou, J. P. et al.: Comparative studies on callose formation in powdery mildew compatible and incompatible barley.Phytopath. Z. 109, 1984, s.147. Go to original source...
  32. Schwarzbach, E.: Epidemiologické aspekty genu mlo způsobujícího odolnost ječmene k padlí travnímu. Genet. a Šlecht. 33 1997, s. 55.
  33. Jahoor, A., Fischbeck, G.: Identification of new genes for mildew resistance of barley at the Mla locus in lines derived from Hordeum spontaneum. Plant Breeding 110, 1993. s. 116. Go to original source...
  34. Dreiseitl, A.:Perspektivy využití genu Pa7 ve šlechtění ječmene na odolnost vůči rzi ječné. Zpravodaj šlechtitelů a semenářů 6, 1988.
  35. Pickering, R. A. et al.: Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare x H. bulbosum hybrid.Plant Breeding 117, 1998, s. 83. Go to original source...
  36. Walther, U. et al.: Hordeum bulbosum as a new source of disease resistance:transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breeding 119, 2000, s. 215. Go to original source...
  37. Statler, G. D., Parlevliet, J. E.: Factors related to partial resistance of barley to leaf rust. Phytopathology 77, 1987, s. 549. Go to original source...
  38. Sato, K., Takeda, K.: Sources of resistance to net blotch in barley germplasm. In:Toward enhanced and sustainable agricultural productivity. Society for the Advancement of Breeding Researches in Asia and Oceania, 1994, s. 37.
  39. Cselny, L. et al.: Inheritance of resistance to Rhynchosporium secalis in spring barley (Hordeum vulgare L.).Plant Breeding 117, 1998, s. 23. Go to original source...
  40. Sachs, E. et al.: Ramularia-Blattflecken (Ramularia collo-cygni Sutton et Waller) an Gerste in Franken (Bayern). Nachrichtenbl. Deut. Pflanzenschutzd. 50, 1998, s. 307.
  41. Steffenson, B. J.: Fusarium head blight of barley: epidemics, impact, and breeding for resistance. Tech. Q. Master. Brew. Assoc. Am. 35, 1998, s. 177.
  42. Perkowski, J.: Production of mycotoxins in cereals by fungi of the genus Fusarium. Post. Nauk Roln. 242, 1993: s.67.
  43. Vacke, J.: Problematika virů u obilovin.In: Perspektivy některých nových směrů ve šlechtění obilovin. ČMŠSA a VÚRV Praha, 1996 s. 14.
  44. Van Lonkhuijsen, H. L. et al.: Evaluation of a malting barley quality assessment system. J. Am. Soc. Brew. Chem. 56, 1998, s. 7. Go to original source...
  45. Horgan, G. W.: The statistical analysis of plant part appearance - a review. Computers and Electronics in Agriculture 31, 2001, s. 169. Go to original source...
  46. Black, C., Panozzo, J: Utilizing near infrared spectroskopy for predicting malting quality in whole grain barley and whole grain malt. In: Proc. of the 10th Australian Barley Technical Symposium, 2001, s. 4.
  47. Minařík, F.: Šlechtění na sladovnickou a nutriční hodnotu zrna.In:Ječmen.SZN, Praha, 1985 s. 110.
  48. MacGregor, A.W.:Biochemistry of malting - the way forward. In: 7th Barley Genetics Symposium, Saskatoon, Canada, 1996, s. 1.
  49. MacLeod, L. C.: Breeding barley for malt and beer, In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. I., s. 81.
  50. Thomas, W. T. B.: Molecular marker-assisted versus conventional selection in barleybreeding.In:Slaferetal.(eds.),Barley science. Recent advances from molecular biology to agronomy of yield and quality. Food Product Press, 2002, s. 177.
  51. Langridge, P. et al.: Practical application of marker assisted selection. In: 7th Barley Genetics Symposium, Saskatoon, Canada, 1996, s. 141.
  52. Eathington, S. R. et al.: Usefulness of marker-QTL associations in early generation selection. Crop Sci. 37, 1997, s. 1686. Go to original source...
  53. Knapp, S.: Marker-assisted selection as a strategy for increasing the probability of selection superior genotypes. Crop Sci. 38, 1998, s. 1164. Go to original source...
  54. Barr, A. R. et al.: Marker assisted selection in theory and practice. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. I., s. 167. Go to original source...
  55. Thomas, W.T.B.et al.:Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley. Theor. Appl. Genet. 91, 1995, s. 1307. Go to original source...
  56. Spaner, D. et al.: Verification of a quantitative trait locus affecting agronomic traits in two-row barley. Crop Sci. 39, 1999, s. 248. Go to original source...
  57. Kjaer, B et al.: Quantitative trait loci for heading date and straw characters in barley. Genome 38, 1995, s.1098. Go to original source...
  58. Ellis, R.P.et al.:Mapping physiological traits in barley.New Phytol.137, 1997, s.149. Go to original source...
  59. Jahoor, A. et al.: Use of molecular markers in cereal breeding. Genet. a Šlecht. 33, 1997, s. 211.
  60. Molnar, S.J.et al.: Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley.Genome 43, 2000, s. 224.1 Go to original source...
  61. Kolb, F. L. et al.: Host plant resistance genes for Fusarium head blight: mapping and manipulation with molekular markers. Crop Sci. 41, 2001 s. 611. Go to original source...
  62. Van Sandorf, S.et al.: Discovery and deployment of molecular markers linked to Fusarium head blight resistance: an integrated system for wheat and barley. Crop Sci. 41, 2001 s. 638. Go to original source...
  63. Drechsler, et al.: High-resolution mapping of the Rph16 locus in barley. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium Adelaide University, South Australia, 2000, Vol. II. s. 95.
  64. Eeckstein P. E. et al.: Identification and development of markers for scald (Rhynchosporium secalis) resistance genes in barley. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium Adelaide University, South Australia, 2000, Vol. II. s. 101.
  65. Steyer, S. et al.: Evaluation of barley yellow dwarf virus tolerance: a controlled field system compared with a molecular marker test. J. Plant Diseases and Protection 106, 1999, s. 553.
  66. Šíp, V. et al.: Možnosti šlechtění ječmene a pšenice na odolnost k viru žluté zakrslosti ječmene. In: Perspektiva některých nových směrů ve šlechtění obilovin. ČMŠS a VÚRV, Praha, 1966, s. 19.
  67. Graner, A. et al.: Molecular mapping of genes conferring resistance to viral and fungal pathogens. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol.I. s. 45.
  68. Šíp, V. et al.: Detection and molecular indentification of BYDV resistance genes in barley. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. II. s. 175.
  69. Jefferies, S. P. et al.: Marker-assised backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding 122, 2003, s. 52. Go to original source...
  70. Castro et al.: Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci. 43, 2003, s. 651. Go to original source...
  71. Henry, R. J. et al.: Marker assisted selection for quality in barley and oat. In: Barley Genetics VII., Proc. of the 7th International Barley Genetics Symposium, Saskatoon, 1996: s.167.
  72. Hayes, P. M., Jones, B. L.: Malting quality from a QTL perspektive. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. I. s. 99. Go to original source...
  73. Hayes, P. M. et al.: A summary of published barley QTL reports. http://www.css.orst.edu/barley/nabsmp/gtlsum.htm.
  74. Hartl, L. et al.: QTL-mapping of malting quality parameters in spring barley. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. II. s. 246.
  75. Collins, H. M. et al.: Using QTL mapping to improve our understanding of malt extract. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. II. s. 225.
  76. Marquez-Cedillo, L. A. et al.: QTL analysis of malting quality in the Harrington x Morex cross. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. II. s. 255.
  77. Ayoub, M. et al.: Marker-based selection in barley for a QTL region affecting α-amylase activity of malt. Crop Sci. 43, 2003, s. 556. Go to original source...
  78. Han, F. et al.: Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor. Appl. Genet. 91, 1995, s. 921. Go to original source...
  79. Takafumi Kaneko et al.: QTL mapping for enzyme activity and thermostability of β-amylase in barley. Breeding Science 51, 2001, s. 99. Go to original source...
  80. Li, C. D. et al.: Mapping of barley (Hordeum vulgare L.) β-amylase alleles in which an amino acid subsitution determines β-amylase isoenzyme type and the level of free β-amylase. J. Cereal Sci. 35, 2002, s. 39. Go to original source...
  81. Frisch, M., Melchinger, A. E.: Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci. 41, 2001, s. 1716. Go to original source...
  82. Frisch, M. et al.: Comparsion of selection strategies for marker-assised backcrossing of a gene.Crop Sci.39, 1999, s.1295. Go to original source...
  83. Wan, Y., Lemaux, P.: Generation of large numbers of independent transformed fertile barley plants. Plant Physiol. 104, 1994, s. 37. Go to original source...
  84. Jacobsen, J. et al.: Barley transformation breeding:further progress and remaining problems. In: Proc. of the 9th Australian Barley Technical Symposium, 1999, 3 s.
  85. Punja, Z. K.: Genetic engineering of plants to enhance resistance to fungal pathogens - a review of progress and future prospects. Can. J. Plant Pathol. 23, 2001, s. 216. Go to original source...
  86. Lemaux, P. G. et al.: Transgenic cereals: Hordeum vulgare L. (barley). In: Molecular improvement of cereal crops, Vasil, I. K. (ed.), Kluwer Academic Publishers, Great Britain, 1999, s. 255. Go to original source...
  87. Horvath, H. et al.: Experiences with genetic transformation of barley and characteristics of transgenic plants. In: Slafer et al. (eds.), Barley science. Recent advances from molecular biology to agronomy of yield and quality, Food Product Press, 2002, s.143.
  88. Lörz, H. et al.:Transgenic barley - a journey with obstacles and milestones. In: Barley Genetics VIII., Proc. of the 8th International Barley Genetics Symposium, Adelaide University, South Australia, 2000, Vol. I. s. 189.
  89. Dahleen, L. S. et al.: Transgenic approaches to combat fusarium head blight in wheat and barley. Crop Sci. 41, 2001, s. 628. Go to original source...
  90. Gianessi, L. P. et al.: Plant biotechnology: Current and potential impact for improving pest management in U. S. agriculture. Fungal resistant barley, 14 s.
  91. Muehlbauer, G. J., SMITH, L.: Developing transgenic barley carrying antifugal protein genes. Barley Newsletter 42, 1998: http://wheat.pw.usda.gov/ggpages//BarleyNewsletter.
  92. Nuutila, A. M. et al.: Expression of fungal thermotolerant (1,3-1,4)-beta-glucanase in transgenic barley seeds during germination. ARS USDA, 1999, http://www.nal.usda.gov/ttic/tektran.
  93. Wong, J. H. et al.: Transgenic barley grain over-expressing wheat thioredoxin h shows improved germination properties. American Society of Plant Biologists, Plan Biology, 2000: http://rycomusa.com/aspp2000/public/P24/0978.html.
  94. Harwood, W. A. et al.:The performace of transgenic barley lines in a UK field trial. Barley Genetics Newsletter 29, 1999, 5 s.
  95. Bregitzer, P., Halbert, E.: Field performance of transgenic barley (Hordeum vulgare L.) containing coat protein sequences from the barley yellow dwarf virus. In: Plant Genome III. Conference, San Diego, 1995, 1 s.
  96. Miflin, B. J.: Crop biotechnology: Where now? Plant Physiology 123, 2000, s.17. Go to original source...
  97. Sommerville, C.:The genetically modified organism conflict.Plant Physiology 123, 2000, s.1201. Go to original source...
  98. Wolfenbarger, L. L., Phifer, P. R.: The ecological risks and benefits of genetically engineered plants. Science 290, 2000, s. 2088. Go to original source...
  99. Prakash, C. S.: The genetically modified crop debate in the context of agricultural evolution. Plant Physiology 126, 2001, s. 8. Go to original source...