Vliv poléhání
na technologické vlastnosti sladovnického ječmene

JAROSLAV LEKEŠ, ČSAZV, Výzkumná stanice Opava

Poléhavost obilovin, zejména sladovnického ječmene, u něhož v našem sortimentu dosud není odrůd dostatečně odolných proti poléhání, je vážnou překážkou při dalším zvyšování hektarových výnosů a zlepšování sladovnické hodnoty. Nebezpečí poléhavosti u obilovin vstupuje ještě ve větší míře do popředí proto, že v krátké době budou podstatně zvýšeny dávky minerálních hnojiv, zejména dusíkatých a bude v zásadě zlepšena i úroveň agrotechniky s ohledem na nutnost dosahování značně vyšších výnosů. Všechny faktory, přínivě k dosažení vysokých výnosů, mohou se v plné míře uplatnit jen u odrůd, šlechtěných na vysokou agrotechniku a odolných proti poléhání. V některých letech, jako tomu bylo např. loňského roku, nabývá poléhavost obilovin masového charakteru. Jakmile větší porostu polehne, zdražují se neúměrně provozní náklady tím, že není možno využívat mechanizované sklízení, obilí je nutno dosou-
podzim a zavlažovaných, umělé poléhání nataže
ním drátěné stěh na porost a pak jejím posunutím
horizontálním směrem na určitém vzdálenosti tak,
aby bylo dosaženo žádaného úklonu stěhla. Při
úklonu stěhla 45° bylo dosaženo nevýhodného zvýšení
dusíku v zrně u porostu, nakloněného 10 až 20 dnů
po metání. U odrůdy Atlas se dusík zvýšil o 0,4 %,
ů Hannchen o 0,6 %. Při úklonu 90° bylo nevýhodné
zvýšení rovněž ve fázi 10 až 20 dnů po metání, a to
u odrůdy Atlas o 2,5 %, u Hannchen o 0,75 %. Na
poměr 8-amylyázy a a-amylyázy neměl úklon žádného
vlivu. *Koblet* (4) sledoval dynamiku hromadění
škrubo u pšenice odrůdy Huron a přišel k závěru,
že odumírání listů nebo poléhání pšenice zmenšovaly
procento škrubo ve zneškodněném zrně. *Adorjan* (5)
uvádí, že hromadění dusíku u pšenice dosahuje ma-
xima v době kvetení; v dálších fázích se jí dusík
zvyšuje velmi pomalu.

Z tohoto stručného přehledu vyplývá, že úklon
stěhla, i když je prováděn uměle a zdaleka ne-
odpovídá všem složitým půdně-klimatickým změ-
nám i samotnému metabolismu rostliny, projevu-
jící se při přirozeném poléhání, má velký vliv
nejen na výnos zrna, ale i na jeho jakost.

**Vlastní pozorování**

Cílem pokusu bylo zjistit vliv přirozeného polé-
hání na biologickou a technologickou hodnotu
zrna některých naších rozšířených odrůd sladov-
nického ječmene. V předloženém článku je však
popisován pouze vliv poléhání na technologickou
hodnotu zrna. Aby výsledky byly objektivní a plně
odpovídaly přirozeným podmínkám poléhání, vzor-
ky zrna byly brány z jednoho a téhož pozemku,
Kde část porostu polehla a část nepolehla, čímž se
postraní vlivy agrotechniky a klimatu vyloučily
na minimálním a nepřirozeně umělém poléhání na roz-
díl do držících autorů nepřijízelo v úvahu. Pro
zpřesnění výsledků byly vzorky k analýze brány
ze 3 odlišných míst, a to odrůdy Opavský a Trumf
z Kroměřížska, Valtický z Vyškovska a v roce 1958
odrůda Opavský z Vojníkova okresu. Byl určován
obal šlikovin (N X 6,25), škřub, plachtost, hek-
tolitrova, in absolutní vaha, procentové zastoupení
velikostních skupin zrn a 8-amylyázy.

Rozbor byly prováděny v jednotlivých velikost-
ních frakcích, aby vyniklo složení a rozdíly u těch
frakcí, které se po vytřídění používají k setí nebo
to sladování. Půdní rozory nevykazovaly v mís-
tech polehlého a nepolehlého porostu žádných
prů-
kazných rozdílů. V roce 1957 všechen odrůdy řady
polehly v mělké zralosti. U odrůd Tumf, Valticky,
Semčický hospodář bylo poléhání zaznamenáno 6.
června, u odrůdy Opavský 21. června. Přičinou
polehnutí byly silné dešti s větrem. Stupeň poléhání
byl poměrně značný a stěhla byla silně nakloněna.
V roce 1958 polehla odrůda Opavský začátkem
metání, 27.-29. června v důsledku prudké bouře
s větrem, za níž v krátké době spadlo 67 mm
srážek.

**Dosažené výsledky**

**Vliv poléhání na obsah šlikovin**

U všech odrůd byl zjišťen značně zvýšený obsah
šlikovin u zerna z polehlého porostu. Rozdíly v ob-
sahu šlikovin uměrně stoupali s klasifikací velikost
zrna. Vzemnou-li se v úvahu jen frakce 2,8 a 2,5
mm, které se používají jako zrna první třídy ke
sladování a u nichž se rozdíly v obsahu šlikovin u po-
lehlého zrna pohybují od 1,46 až k 0,17 %, do-

**Tabulka 1**

<table>
<thead>
<tr>
<th>Odrůda</th>
<th>Velikostní frakce mm</th>
<th>Obsah šlikovin v % porost poleh</th>
<th>Rizik v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skložen roku 1957</td>
<td>Triumf</td>
<td>2,8</td>
<td>16,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>15,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>16,37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,0</td>
<td>15,38</td>
</tr>
<tr>
<td></td>
<td>Valtický</td>
<td>2,8</td>
<td>16,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>16,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>17,20</td>
</tr>
<tr>
<td></td>
<td>Semčický hospodář</td>
<td>2,8</td>
<td>13,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>13,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>14,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,0</td>
<td>16,07</td>
</tr>
<tr>
<td></td>
<td>Opavský</td>
<td>2,8</td>
<td>14,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>14,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>15,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,0</td>
<td>17,60</td>
</tr>
</tbody>
</table>

| Skložen roku 1958 | Opavský | 2,8 | 12,71 | 11,12 | 1,59 |
| | | 2,5 | 13,40 | 11,94 | 1,46 |
| | | 2,2 | 14,93 | 12,01 | 2,92 |

**Vliv poléhání na obsah šlikovin**

Obsah šlikovin je u zerna z polehlých porostů pod-
statně nižší. Rozdíly se zvětšují úměrně se zmen-
šováním velikosti zrna. U všech odrůd se projevuje
úzká spojitost mezi obsahem šlikovin a škřubu.
S větším obsahem šlikovin se zmenšuje obsah škřuba.
Ječmen k výrobě jakostního sladu má obsahovat
nejméně 62 % škřubo. U polehlého porostu ani v jednom případě zrna nejlepší frakce (2,8
mm) uvedené hranice nedosahuje, což jasně uká-

**Tabulka 2**

<table>
<thead>
<tr>
<th>Odrůda</th>
<th>Velikostní frakce mm</th>
<th>Obsah šlikovin v % porost poleh</th>
<th>Rizik v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skložen roku 1957</td>
<td>Triumf</td>
<td>2,5</td>
<td>64,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>63,75</td>
</tr>
<tr>
<td></td>
<td>Valtický</td>
<td>2,5</td>
<td>62,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>62,75</td>
</tr>
<tr>
<td></td>
<td>Semčický</td>
<td>2,5</td>
<td>61,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>60,0</td>
</tr>
<tr>
<td></td>
<td>Opavský</td>
<td>2,5</td>
<td>65,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>64,95</td>
</tr>
</tbody>
</table>

| Skložen roku 1958 | Opavský | 2,8 | 64,75 | 62,5 | 1,8 |
| | | 2,5 | 61,5 | 59,8 | 1,7 |
zuje na nevhodnost použití zrna z polehlého po rostu k výrobě jakostního sladu.

**Vliv polehlého na plachtost**

I v obsahu pluch vidíme značné rozdíly mezi zrnem z polehlého a nepolehlého porostu. Zrno

<table>
<thead>
<tr>
<th>Tabulka 3</th>
<th>Rozdíly v obsahu pluch v polehlém a nepolehlém po rostu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odráž</td>
<td>Velikostní frakce mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sklizeň roku 1957</strong></td>
<td></td>
</tr>
<tr>
<td>Triumf</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Valtický</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Opavský</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td><strong>Sklizeň roku 1958</strong></td>
<td></td>
</tr>
<tr>
<td>Opavský</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
</tbody>
</table>

z polehlého porostu má větší obsah pluch a se zmenšováním jeho velikosti se rozdíly v obsahu pluch zvýšují.

**Vliv na hektolitrovou a absolutní váhu zrna**

Značné snížení v hektolitrové a absolutní váze u zrna z polehlého porostu ukazuje i zde na zhor-

<table>
<thead>
<tr>
<th>Tabulka 4</th>
<th>Rozdíly v hektolitrové a absolutní váhe u zrna z polehlého a nepolehlého porostu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odráž</td>
<td>Hektolitrová váha v kg</td>
</tr>
<tr>
<td></td>
<td>polehlý</td>
</tr>
<tr>
<td><strong>Sklizeň roku 1957</strong> (zrno nebylo trženo)</td>
<td></td>
</tr>
<tr>
<td>Triumf</td>
<td>66.7</td>
</tr>
<tr>
<td>Valtický</td>
<td>70.7</td>
</tr>
<tr>
<td>Semický hospodář</td>
<td>66.9</td>
</tr>
<tr>
<td>Opavský</td>
<td>68.7</td>
</tr>
</tbody>
</table>

šenou jakost a větší množství propadu při mechanickém tržení.

**Vliv na poměr jednotlivých frakcí**

Z tabulky vysvítá, že zrno nepolehlého porostu je u většiny odrůd zastoupeno více než 80 % veli-
kostními frakcemi 2.8 a 2.5 mm, používanými k setí nebo sladování, naproti tomu podíl zrna z polehlého porostu v uvedených velikostních frakcích klesá zpravidla hluboko pod 50 %. Je zřejmé, že není vhodno získávat hodnotné osivo nebo suroviny ke sladování z těchto porostů.

<table>
<thead>
<tr>
<th>Tabulka 5</th>
<th>Poměry velikostních frakcí z polehlého a nepolehlého porostu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odráž</td>
<td>Velikostní frakce mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sklizeň roku 1957</strong></td>
<td></td>
</tr>
<tr>
<td>Triumf</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Valtický</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Semický hospodář</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Opavský</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
</tbody>
</table>

Vliv na aktivitu β-amyлazy

Větší aktivity amyлazy u zrna z polehlého po rostu je možné vysvětlovat jednak větší intenzitou dýchaní, větší energií kličivosti a vyšším obsahem bílkovin u zrna z polehlých rostlin. Hoffmann a Günzel (6) udávají, že aktivita β-amyлazy se zvy-

šuje s prorůstáním semene do 3 dnů a pak rychle

<table>
<thead>
<tr>
<th>Tabulka 8</th>
<th>Rozdíly v aktivitě β-amyлazy u zrna z polehlého a nepolehlého porostu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odráž</td>
<td>Velikostní frakce mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sklizeň roku 1957</strong></td>
<td></td>
</tr>
<tr>
<td>Triumf</td>
<td>2.8</td>
</tr>
<tr>
<td>Valtický</td>
<td>2.5</td>
</tr>
<tr>
<td>Opavský</td>
<td>2.8</td>
</tr>
<tr>
<td><strong>Sklizeň roku 1958</strong></td>
<td></td>
</tr>
<tr>
<td>Opavský</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
</tbody>
</table>

klesá. Při omezené přesnosti provozní metodiky Sandegrena a Klanga (± 20 jednotek) a při malém množství vzorků je nutno uvedené výsledky a rozdíly považovat za orientační.

**Závěr**

Bylo prokázáno, že polehlé má značný zhoršu-

jící vliv na technologickou hodnotu sladovnického ječmenu. Zrna z polehlého porostu obsahuje v prů-
měru o 4,75 % bílkovin více, skrobu o 4,24 % méně než zrna z nepolehlého porostu. Vliv polehlé se projevuje rovněž na zvětšení plachtosti (o 0,49
a více %), na snížení hektolitrové a absolutní váhy i na zvýšení propadu na střech. Všechny faktory, jež jsou základním předpokladem k dosažení výsloce hodnotného sladu, jsou u zrn polehlého porostu značně sníženy a dokonce i frakce 2,5 a 2,8 mm, které podle norem náležejí do první skupiny, neskýtaji nám záruku k výrobě jakochného sladu. Uvedené výsledky, jež se dále vrací činu, zda v době masového polehnutí porostu, jak tomu bývá v některých letech bohatých na slážky, nebude nutné alespoň partie, určené k výrobě exportního sladu, posuzovat nejen podle vzhledu a mechanických rozborů, ale i podle obsahu dusíku a škrobu a nevyhovující partie ze sladování vylučovat, takže zrno z polehlého porostu, které má vysoký obsah bílkovin, by se používalo na krmení.

**Literatura**

(5) Adorjan: cit. z Biochimii kulturnych rastení, tom I, str. 31. Moskva 1936

**Došlo do redakce 2. 4. 1959.**

**EINFLUSS DER LAGERUNG AM FELD AUF DIE TECHNOLOGISCHEN EIGENSCHAFTEN DER BRAUGERSTE**

Es wurde festgestellt, das die Lagerung am Feld einen sehr ungünstigen Einfluss auf den Braunwert der Gerste hat. Das Korn aus gelagerten Gewächsen enthält im Durchschnitt um 4,75 % mehr Eiweiß und um 4,24 % weniger Stärke als das Korn aus lagerfresten Gewächsen. Der Einfluss der Lagerung wirkt sich auch in einem höheren Spelzengehalt (um 0,49 und mehr %), in einem geringeren absoluten und Hektolitergewicht und einem ungünstiger Sortierungs-ergebnis aus.

Alle Faktoren, die eine Voraussetzung für die Erzeugung von Qualitätsmalz bilden, sind in dem aus gelagerten Gewächsen stammenden Korn beträchtlich geschwächt. Nicht einmal die Anteile der Siebe 2,8 und 2,5 mm, die nach der Norm der Sorte I angehören, liefern eine Garantie für die Erzeugung von Qualitätsmalz. Die erzielten Ergebnisse, die einen Ausgangspunkt für weitere Arbeiten bilden, zwingen zu der Überlegung, ob es in den an Niederschlägen reichen Jahren, in denen die Lagerung der gewächse massenweise vorkommt, nicht nötig wäre, wenigstens diejenigen Gerstenarten, welche zur Erzeugung von Exportmalz bestimmt sind, nicht nur nach dem Aussehen und den Ergebnissen der mechanischen Analyse zu beurteilen, sondern auch nach dem Stärke- und Stickstoffgehalt.

**QUALITY OF MALTING BARLEY FROM LAID-DOWN CROP**

It has been stated that the laid-down crop effects very unfavourably the technological properties of malting barley. Barley from laid-down crop contains in average by 4,75 % more albumins and by 4,24 % less starchy than barley from standing crop. Further disadvantages of laid-down crop are the higher proportion of glumes (their quantity is by 0,49 % or even more greater), worse specific weight of grain, lower yield and higher proportion of thin grains. All the factors vital for obtaining high quality malt are therefore substantially poorer. Good malt cannot be manufactured even from the 2,8—2,5 mm grade which is generally classified as the first choice. The results of research work are further analysed. Apparently it is reasonable in seasons with heavy rains, when laid-down crops prevail, to scrutinize batches designed for manufacturing export malt more carefully. Besides outer look and mechanical properties it is necessary to take into account the nitrogen and starch contents. Batches not meeting high requirements should be eliminated. Barley from laid-down crop, containing more albumins, can be used for feeding cattle.