Genetické manipulace s pivovarskými kvasinkami

Prof. Dr. OLGA BENDOVÁ, DrSc., Přírodovědecká fakulta UK, Praha, katedra genetiky, mikrobiologie a biofyziky

Proces kvašení představuje jednu z nejdůležitějších fázi výroby piva. Jeho úspěšný průběh předpokládá ně- jen správné složení mladiny, obsah kysliku při zakvaš- nání a optimální teploty vedení procesu, ale i používání vhodných kmenů pivovarských kvasínek.

Od kmenů spodních kvasínek, u nás všeobecně používaných se požaduje, aby v potřebné míře prokvašovaly mladiny, aby koncem hlavního kvašení floculovaly a se- dimentovaly na dně kvasné nádoby a aby vyrobené pivo mělo dobrou chuť a vůni odpovídající danému typu.

Je však známo, že mezi kmeny pivovarských kvasínek existují rozdíly někdy obtížné postižitelné, v jejichž dů- sledku jsou některé kmeny více, jiné méně vhodné pro různé provozní podmínky či pro výběr určitého typu piva. Z tohoto hlediska je třeba přístupovat k jejich výběru pro praktické použití, a to zcela koncentraci tam, kde se po- žadují kmeny pro kvašení mladin s vysokým obsahem netradičních surovin či s vysokou koncentrací cukru nebo naopak pro výběr piv nízkokokolíkových nebo spe- cializovaných piv pro diabetiky. V těchto případech zpravidla nelze kontrolovat činnost kvasínek pouze změnami technologických parametrů, ale je třeba pracovat s kmeny se změněným genetickým vybavením.

Změna genomu u kvasínek může obecně nastat následně spontánně či indukovanou, mitotickou rekombinací, hy- bridizační kvasínek sexuálně či somatickou a transfor- mací.

Spontání mutace se vyskytují pouze ve velmi nízké frekvenci (10^-6 až 10^-10), a proto je pro získávání perspektivních kmenů prakticky nelze využít. Určitou mož- nost v tomto směru představuje aplikace zkušeností z kontinuálních kultivací. Například Francis a Hansche [1] získali v průtokové kultuře mutanty Saccharomyces cerevisiae s výsíž aktivitou kyselé fosfatazy. U pivovars- ských kvasínek však dosud nebyl možné izolovat mutanty s výšší kvasnovou schopností k kultur vedeným kontinuál- ně za vhodných podmínek nebla experimentálně ověřena.

Indukované mutace po působení mutagenických činitelů (např. UV-zařízení, nitratosuganidin, etilmetasilfosfina aj.), na populaci vznikají s výšší frekvencí, čímž se zvyšuje pravděpodobnost izolace mutanty požadovaného typu. Například indukované mutanty pivovarských kvasínek s různou floculační schopností, tvorbou sivodutí a diacetyl oxidovat ve Velké Británii Molzahn [2, 3]. Také belgické autory Romero-jeunehonne e a Masschelein [4] získali indukované mutanty, a u nich byla blokována tvorba acetaláctátu a acetohydroxybutyrátu, prekurzuř diacetylu a 2,3-pentendionu. Tyto nepochybně z hlediska složení tříhářských látek zajímavé mutanty však nebyly stále.

Induice mutant u běžně používaných triploidních až polyplodních kmenů pivovarských kvasínek jsou problematické a nelze očekávat mnoho úspěchů.

Při vyhledávání vhodných kultur lze však vycházet i z proměnlivosti kmenů, zejména hlavní představu lze po- vzbudit mitotické rekombinací a z níž plynoucí sereg- gace při vegetativním rozmnožování kvasínek.

Změnu vlastností kvasinkové buňky lze dosahovat hybridizací.

Sexuální hybridizace je založena na střídání haploidní a diploidní fáze životního cyklu kvasínek a na kopulaci jejich životaschopných spor. Střídání obou fází poprvé popsal v roce 1918 Krus a Šatava [5]. Tento jev však dále vědecky propagoval Winge [6]. Prokázal, že kmeny rodu Saccharomyces jsou ve vegetativní fázi běžné di- ploidní. Při sporulaci vznikají haploidní buňky párovacího typu a nebo x. Kopulací buněk rozdílného párovacího typu vznikají diploidní zygony (a'/a) a z nich diploidní buňky (x' bř). Kopulace je indukovaná specifickými párovacími faktory, vznikajícími v buněčné stále.

Hybridizační studie přispěly k bližšímu poznání geneti- tirtho řízení flocukace a kvašení.

Názory na genetické řízení flocukace - schopnosti kvasínek shluhovat se v vločky - zaznamenaly v průběhu doby řadu změn a vědecké studie této vlastnosti přinášejí stále nové poznatky. Postupně byly popsány dominantní geny označené jako FLO1, FLO2, FLO3, FLO4 a jeden generativní FLO5. U genu FLO1 byla uvedena i jeho lokalizace na chromosomu I [7, 8]. V souladu s touto období se však na základě experimentálních výsledků pro- százo názor, že geny FLO1, FLO2, FLO3 a FLO4 jsou ale- tické a že tedy existuje pouze jediný gen FLO1 lokalizovaný na chromosomu I [9].

Maltsa a maltotriosa jsou hlavními složkami zkvasi- telných cukrů v mladině (maltsa 50 až 55 %, maltotrio- sa 10 až 14 %), a proto kvasná schopnost pivovarských kvasínek závisí především na následcích genetickým vybav- během, determinujícím tvorbou enzymů, které reagují transport těchto látek do buňky a jejich utilizaci (malt- osemerasa, maltotriosemerasa, a-glukosidasa [10]. Metabolismus maltsy a maltotriosa je u Saccharomyces kontrolován polymerickým genovým systémem MAL, jehož geny jsou lokalizovány na různých chromosomech (tab. 1). Zkvašování maltsy tedy vyžaduje přítomnost alespoň jednoho genu MAL. Expressé těchto genu byla podrobně prostudována [11, 12, 13, 14], avšak výsledky
Tabulka 1. MAL geny u Saccharomyces sp.

<table>
<thead>
<tr>
<th>Geny</th>
<th>Lokalizace chromozómu</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAL 1</td>
<td>chromozom VII</td>
</tr>
<tr>
<td>MAL 2</td>
<td>chromozom III</td>
</tr>
<tr>
<td>MAL 3</td>
<td>chromozom XI</td>
</tr>
<tr>
<td>MAL 4</td>
<td>nezmapován</td>
</tr>
<tr>
<td>MAL 5</td>
<td>nezmapován</td>
</tr>
<tr>
<td>MAL 6</td>
<td>nezmapován</td>
</tr>
</tbody>
</table>

těchto prací neinformovaly o expresi MAL genů při kvašené mladínu, protože experimenty byly prováděny v sedmičleněném mědu s použitím bezbariénných kvasinových extraktů. Pokusy *S. cerevisiae* a jeho sporoprodukty *S. ellipsosporus* byly však již založeny tak, že kvasné zkoušky s různými hajdajovými a konstruovanými diploidními a polyploidními kmeny, obsahujícími různé MAL geny, byly provedeny přímo v mladínu. Ukázalo se, že kmeny s MAL 4 a s dalších pokusných podmínek úplně nepravily mladínu (100% zvážení maltotriozosy), zatímco kmeny s MAL 1 a MAL 3 patří do podstatně méně hlubokého, protože maltotriozosu neutilizovaly. Značné snížení kvasení maltotriozosy (zvážené pouze 30 až 40%) se projevilo u hajdajových kmenů s MAL 4, MAL 5 a MAL 6. Opačně tomu bylo s diploidní typy MAL 1/MAL 2, MAL 1/MAL 3, MAL 1/MAL 4, MAL 1/MAL 5, MAL 1/MAL 6, tetraploidní MAL 1/MAL 2/MAL 3/MAL 4 a octaploidní MAL 1/MAL 2/MAL 3/MAL 4/MAL 5/MAL 6. Těchto kmenů byly vyskytnuté ve hřebíku s kmeny MAL 4. Genetika MAL systému je však dále komplikována skutečností, že byl popsan další gen MAL 7 [17] a 7 DSF genov souvisejících s maltoatoxickým metabolismem [18].

Geneticky je determinováno 1 štěpěn dextrinové extracelulární amyloglukosidu na glukosu. Tento enzym nevytvářejí pivovářské kvasinky, ale jeho produkce byla zaznamenána *u S. cerevisiae* diastaticus. Tento druh izolován byl v roce 1952 *Andrews* a *Gilliland* [19]. Původně se mělo za to, že tvorba tohoto enzymu je kódována jediným genem *DEX*, lokализovaným na chromozóm III. V současné době jsou známy tři *DEX* geny [20, 21]. Obdobně někdy *Takami* geny STA 1–3 odpovídají za štěpěn skrubu u různých kmenů *S. cerevisiae diastaticus* [22].

V souvislosti s uvedenými geny je pro výrobu nízkokalorických piv a speciálních piv pro diabeticety ve větší míře zájmová otačka konstrukce kmenů pivovářských kvasinek, do jejichž genogramu by byly vhodnou metodou vneseny *DEX* geny. Sexualní hybridizace je u pivovářských kvasinek diploidního a polyploidního charakteru velmi obtížná a málo významná vzhledem k tomu, že tyto kmeny buď nesporují či málo sporují, jejich spory nespadají a jsou požadovány obchodovány. Proto odtud se ne- ktere autorky pokusily rozšířit. Například *Spence* a *Sporcepovciová* [23] získali hybridy polyploidních kmenů pivovářských kvasinek (respirentační deficitních muta) s autotřímovými sporujícími hybridy. Výsledné prototřímové hybridy sporují a mají normální reprodukovatelný rost. Postup nevyžadují živelnou poklop, aplikovatelný dobového na polyploidní kvasinky, je samicová hybridizace na základě řešení sferoplastů či protoplastů buněk. Tato metoda je založena na tom, že kmeny, a někdy má je vytvořeno řešení, je vhodný enzymovým preparátem (nejčastěji je založené štěpěn hlémy *Halospora* - *Helix poma- tatia*) živelnou očišťování nebo úplně buněčné měny v osmoticky stabilizovaného prostředí (vzhled chromosóm man- toln, sorbitolu, chloridu drasleneho) a poté se působením fyzikálních činidel (polyetilenfukolku) v přítomen kalciových iónů indukuje jejich řešení. Vzniklé hybridní sferoplasty nezařízené sferoplasty revertovaly v médii s vysíši koncentrací agaru. Tato metoda byla propracována a je aplikována řadou autů, mezi nimi je to u nás především *Soboda* [24] a v MLR *Maracecnzna, Fe- rencz* a *Szpiry* [25, 26].


Další možnost, jak měnit genom kvasinek, je transformace, která v současné době rozvoje genového inženýrství zaujímá významné místo. Během tohoto procesu se pře- náší DNA z donorového kmena do recipientního.

První pokusy o transformaci prováděli v 60. letech *Oppenworth* [33, 34] při plošnou schopnost zvážovat sacharidové v rybíkářských kvasinek *Saccharomyces* apod. O správnosti jeho výsledků bylo však pouze pochval Department of Genetics [28]. Zde je tvorba nového mutanta, který je schopen zvážovat nové DNA z donorového kmena do recipientního.

Transformace představuje postup, který překonává nespecifickou řešení, jejímž je nekvalitní, případě-li se pouze určitý životně jistý výsledek. Řešení při řešení sferoplasta je při běžném provedení prakticky o přenos celého genomu. Aplikace plasmidových vektorových systémů představuje pokrok v porovnání s transformací pomocí nativní DNA. Jde o zavádění techniky rekombinačního vytvoření DNA, která je založena na štěpění molekuly DNA předem restrikčních enzymů na fragmenty obsahující specifické sekvence nukleotidů. Tyto fragmenty se vytvoří na vektor-plasmidu a vytvořený rekombinantní molekula (chi-
měra) je vnesena do recipientní buňky. Úspěšné transformace kvasinek Saccharomyces cerevisiae s použitím plasmidů jako vektorů prováděli v nedávné době Reggs [37] a Hinnen [38]. Také Stewart a spolupracovníci [39] se zaměřují v současné době na aplikaci této techniky pro konstrukci nových kmenů pivovarských kvasinek. K tomuto účelu vyšetřovali u řady kmenů přítomnost, izolaci a purifikaci kruhového 2 μm plasmidové DNA, která je jedním z možných použitelných vektorek [40, 41]. Je tedy nesprávné, že uvedená technika otevírá další cesty výzkumu.

Soudržně lze konstatovat, že fáze sferoplastů a transformace umožňují genetickou manipulaci s kmeny pivovarských kvasinek. Fáze je však technikou s omezenou možností kontroly vznikajícího genotypu. Transformaci lze v současné době pro konstrukci nových kmenů kvasinek považovat za metodu s velkou nadějí na úspěch. Její význam a zjednodušení výsledků její aplikace se však vyžadují ještě velmi mnoho experimentálního úsilí.

Literatura

[1] FRANCIS, J. C.; HANSHE, P. E.: Genetics 70, 1972, s. 59
[3] MOLZAHN, S. W.; J. AMER. SOC. BREW. CHEM. 1977, s. 54


Článek obsahuje přehled metod genetické manipulace s pivovarskými kvasinkami se uvedením příkladů některých dosažených experimentálních výsledků. Hodnotí možnosti využití mutagenese, hybridizace sexuální a somátní, založené na fázi protoplasta kvasinkových buňek, až po velmi perspektivní postupy transformatace.


The paper comprises a review of methods used in genetic manipulation with brewing yeasts including several examples of experimental results achieved. Possibilities of mutagenesis utilization, sexual and somatic hybridization based on fusion of protoplasts of yeast cells and the very perspective treatments of transformation are evaluated.


Der Artikel enthält eine Übersicht der Methoden der genetischen Manipulation mit den Bierhefen mit Anführung von Beispielen der erzielten experimentellen Ergebnisse. Es werden die Möglichkeiten der folgenden Manipulationensexperimenten ausgewertet: Mutagenese, sexuelle und somatische Hybridisierung, die auf der Fusion der Protopenzien der Hefenzellen basiert ist, bis zu sehr perspektivischen Transformationsverfahren.