Kvasny Prum. 2011; 57(7-8): 277-284 | DOI: 10.18832/kp2011032

Stress responses in brewing yeast.Peer-reviewed article

Karel SIGLER, Dagmar MATOULKOVÁ
1 Mikrobiologický ústav, AV ČR, v.v.i., Vídeňská 1083, 142 20 Praha 4
2 Výzkumný ústav pivovarský a sladařský, a.s., Lípová 15, 120 44 Praha 2

Even in nature, yeast cells are exposed to a combination of stressful conditions. When used for industrial production, as in brewery, they are subject to additional manmade stresses, and/or the natural environmental stresses are intensified. During the brewing process yeast cells are challenged, e.g., by variations in temperature, oxygen concentration and pH, hypo- and hyperosmotic stress, hydrostatic and chemical stress (ethanol, malt and hop phenolics, malt antimicrobial compounds, adjunct components, CO2 overpressure, etc.), and changing levels of nutrients. Other stresses, include, e.g., acid washing to remove bacteria before repitching, or centrifugation causing hydrodynamic stress. To lower operating costs, reduce processing times and maximize revenue [2] breweries adopt and evolve continuously new systems that potentially amplify and/or extend the existing stresses. Here we tried to summarize briefly the main features of both environmental and brewing stresses, characterize the types of stress responses of yeast cells, and point out the specificities of brewing yeast strains and the conditions of their use for beer production, and the way in which they reflect in the stress responses of brewing yeast.Even in nature, yeast cells are exposed to a combination of stressful conditions. When used for industrial production, as in brewery, they are subject to additional manmade stresses, and/or the natural environmental stresses are intensified. During the brewing process yeast cells are challenged, e.g., by variations in temperature, oxygen concentration and pH, hypo- and hyperosmotic stress, hydrostatic and chemical stress (ethanol, malt and hop phenolics, malt antimicrobial compounds, adjunct components, CO2 overpressure, etc.), and changing levels of nutrients. Other stresses, include, e.g., acid washing to remove bacteria before repitching, or centrifugation causing hydrodynamic stress. To lower operating costs, reduce processing times and maximize revenue [2] breweries adopt and evolve continuously new systems that potentially amplify and/or extend the existing stresses. Here we tried to summarize briefly the main features of both environmental and brewing stresses, characterize the types of stress responses of yeast cells, and point out the specificities of brewing yeast strains and the conditions of their use for beer production, and the way in which they reflect in the stress responses of brewing yeast.

Keywords: yeast, stress, stress responses

Received: May 2, 2011; Accepted: June 1, 2011; Published: July 1, 2011 

References

  1. Boswell, C. D., Nienow, A. W., Gill, N. K., Kocharunchitt, S., Hewitt C. J.:The impact of fluid mechanical stress on Saccharomyces cerevisiae cells during continuous cultivation in an agitated, aerated bioreactor; its implication for mixing in the brewing process and aerobic fermentations. Food Bioprod. Process. 81, 2003, 23-32. Go to original source...
  2. Chlup, P. H., Bernard, D., Stewart, G. G.: Disc stack centrifuge operating parameters and their impact on yeast physiology.J.Inst. Brew. 114, 2008, 45-61. Go to original source...
  3. Gasch, A.P.:The environmental stress response:a common yeast response to diverse environmental stresses. Curr. Top. Genet. 1, 2003, 11-70. Go to original source...
  4. Hilt, W., Wolf, D. H.: Stress-induced proteolysis in yeast. Mol. Microbiol. 6, 1992, 2437-2442. Go to original source...
  5. Ruis, H., Schuller, C.: Stress signaling in yeast. BioEssays 17, 1995, 959-965. Go to original source...
  6. Gibson, B. R., Lawrence, S. J., Leclaire, J. P. R., Powell, C. D., Smart, K. A.: Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31, 2007, 535-569. Go to original source...
  7. Yancey, P. H.: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2005, 2819-2830. Go to original source...
  8. Mensonides, F. I. C., Brul, S., Klis, F. M., Hellingwerf, K. J., de Mattos, M.J.T.: Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Appl. Environm. Microbiol. 71, 2005, 4531-4538. Go to original source...
  9. Tamas, M. J., Thevelein, J. M., Hohmann. S.: Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472, 2000, 159-165. Go to original source...
  10. Nass, R., Rao, R.:The yeast endosomal Na+ /H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology UK 145, 1999, 3221-3228. Go to original source...
  11. Hohmann, S.: Osmotic stress signaling and osmoadaptation in yeasts Microbiol. Mol. Biol. Revs. 66, 2002, 300-372. Go to original source...
  12. Kaeberlein, M., Andalis, A. A., Fink, G. R., Guarente, L.: High osmolarity extends life span of Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol. Cell. Biol. 22, 2002, 8056-8066. Go to original source...
  13. Čadek, R., Chládková, K., Sigler, K., Gášková, D.: Impact of the growth phase on membrane potential and activity of MDR-pumps of S.cerevisiae:effect of pump overproduction and carbon source. Biochim. Biophys. Acta 1665: 111-117, 2004. Go to original source...
  14. Wolfger, H., Mamnun, Y. M., Kuchler, K.: The yeast Pdr15p ATPbinding cassette (ABC) protein is a general stress response factor implicated in cellular detoxification. J.. Biol. Chem. 279, 2004, 11593-11599. Go to original source...
  15. Gibson, B.R., Lawrence, S.J., Boulton, C.A., Box, W.G., Graham, N.S., Linforth, R.S.T., Smart, K.A.:The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res. 8, 2008, 574-585. Go to original source...
  16. Hammond, J. R. M.:Yeast genetics, in: Brewing Microbiology, eds. Priest, F. G., Campbell, I., 3rd Ed., Kluywer Academic/Plenum Publishers, New York 2003. Go to original source...
  17. Muro, M., Izumi, K., Imai, T., Ogawa Y., Ohkochi M.: Yeast cell cycle during fermentation and beer quality. J. Am. Soc. Brew. Chem. 64, 2006, 1151-154. Go to original source...
  18. Powell, C. D., Quain, D. E., Smart, K. A.: The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 3, 2003, 149-157. Go to original source...
  19. Barker, M. G., Smart, K. A.: Morphological changes associated with the cellular ageing of a brewing yeast strain.J.Am.Soc.Brew. Chem. 54, 1996, 121-126. Go to original source...
  20. James, T. C., Usher, J., Campbell, S., Bond, U.: Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.Curr.Genet.53, 2008, 139-152. Go to original source...
  21. Gibson, B.R., Graham, N.S., Boulton, C.A., Box,W.G., Lawrence, S. J., Linforth, R. S. T., May, S. T., Smart, K. A.: Differential yeast gene transcription during brewery propagation. J. Am. Soc. Brew. Chem. 68, 2010, 21-29. Go to original source...
  22. Brosnan, M. P., Donnelly, D., James, T. C., Bond, U.: The stress response is repressed during fermentation in brewery strains of yeast. J. Appl. Microbiol. 88, 2000, 746-755. Go to original source...
  23. Li, B-Z., Cheng, J-S., Quiao, B., Yuan, Y-I.: Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J. Industr. Microbiol. Biotechnol. 37, 2010, 43-55. Go to original source...
  24. Jones, H. L., Margaritis, A., Stewart, R. J.: The combined effects of oxygen supply strategy, inoculum size and temperature profile on very-high-gravity beer fermentation by Saccharomyces cerevisiae. J. Inst. Brew. 113, 2007, 168-184. Go to original source...
  25. Clarkson, S. P., Large, P. J., Boulton, C. A., Bamforth, C.W.: Synthesis of superoxide dismutase, catalase and other enzymes and oxygen and superoxide toxicity during changes in oxygen concentration in cultures of brewing yeast. Yeast 7, 1991, 91-103. Go to original source...
  26. van Nierop, S. N. E., Axcell, B. C., Cantrell. I. C., Rautenbach, M.: Quality assessment of lager brewery yeast samples and strains using barley malt extracts with anti-yeast activity. Food Microbiol. 26, 2009, 192-196. Go to original source...
  27. Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., Desamblanx, G.W., Osborn, R.W.:Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16, 1997, 297-323. Go to original source...
  28. Gorjanović, S., Beljanski, M. V., Gavrović-Jankulović, M., Gojgić- Cvijović, G., Pavlović, M. D., Bejosano, F.: Antimicrobial activity of malting barley grain theumatin-like protein isoforms, S and R. J. Inst. Brew. 113, 2007, 206-212. Go to original source...
  29. Casey, G.P., Magnus, C.A., Ingledew,W.M.:High-gravity brewing: effects of nutrition on yeast composition, fermentative ability and alcohol production. Appl. Environ. Microbiol. 48, 1984, 639-646. Go to original source...
  30. Castrejon, F., Codon, A. C., Cubero, B., Benitez, T.: Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts.Syst. Appl. Microbiol. 25, 2002, 462-467. Go to original source...
  31. Pratt, P. L., Bryce, J. H., Stewart, G. G.: The effects of osmotic pressure and ethanol on yeast viability and morphology. J. Inst. Brew. 109, 2003, 218-228. Go to original source...
  32. Krofta, K., Nesvadba, V., Poustka, J., Nováková, K., Hajšlová, J.: Contents of prenylflavonoids in Czech hops and beers. Acta Horticult. 668, 2005, 201-206. Go to original source...
  33. Hazelwood, L. A., Walsh, M. C., Pronk, J. T., Daran, J-M.: Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso- -acids. Appl. Environm. Microbiol. 76, 2010, 318-328. Go to original source...
  34. Pereira, M.B.P.,Tisi, R., Fietto, L.G., Cardoso, A.S., Franca, M.M., Carvalho, F. M., Tropia M. J., Martegani, E., Castro, I. M., Brandoa, R.L.: Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H+ -ATPase in the yeastSaccharomycescerevisiae.FEMSYeastRes.8,2008,622-630. Go to original source...
  35. Nso, E., Goffeau, A., Dufour, J. P.: Fluctuations during growth of the plasma membrane H+ -ATPase activity of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Folia Microbiol. 47, 2002, 401-406. Go to original source...
  36. Mathieu C., van der Berg, R., Iserentant D.: Prediction of yeast fermentation performance using the acidification power test.Proc. Eur. Brew. Conv. 23, 1991, 273-278.
  37. Lorimer, G. M.: Carbon dioxide and carbamate formation: the makings of a biochemical control system. Trends Biochem. Sci. 8, 1983, 65-68. Go to original source...
  38. Lumsden, W. B., Duffus, J. H., Slaughter, J. C.: Effects of CO2 on budding and fission yeasts.J.Gen.Microbiol.133, 1987, 877-881. Go to original source...
  39. Blieck, L., Toye, G., Dumortier, F., Verstrepen, K. J., Delvaux, F. R., Thevelein, J. M., Van Dijck, P.V.: Isolation and characterization of brewer s yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol. 73, 2007, 815-824. Go to original source...
  40. Majara, M., O Connor-Cox, E. S. C., Axcell, B. C.: Trehalose: a stress protectant and stress indicator compound for yeast exposed to adverse conditions. J. Am. Soc. Brew. Chem. 54, 1996, 221-227. Go to original source...
  41. van Nierop, S. N. E., Axcell, B. C., Cantrell, I. C., Rautenbach, M.: Optimised quantification of the antiyeast activity of different barley malts towards a lager brewing yeast strain. Food Microbiol. 25, 2008, 895-901. Go to original source...
  42. Okada, T., Yoshizumi, H.: The mode of action of toxic protein in wheat and barley on brewing yeast. Agric. Biol. Chem. 37, 1973, 2289-2294. Go to original source...
  43. Verbelen, P. J., Depraetere, S. A., Winderinckx, J., Delvaux, F. R., Delvaux, F.: The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res. 9, 2009, 226-239. Go to original source...
  44. Higgins,V.J., Beckhouse, A.G., Oliver, A.D., Rogers, P.J., Dawes, I. A.: Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl. Environm. Microbiol. 69, 2003, 4777-4787. Go to original source...
  45. Pearlstein, K. M.: Pilot-scale studies on extended aeration at fermentor fill. ASBC Journal 46, 1988, 108-111. Go to original source...
  46. Bourdaudhui, G., Dillemans, M., Van Nedervelde, L., Debourg, A.: Improved yeast resistance to stress using antioxidants extracted from Saccharomyces cerevisiae. Proc. 29th EBC Congress, pp. 586-597, Dublin 2003.
  47. Dziadkowiec, D., Krasowska, A., Liebner, A., Sigler K.: Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in S. cerevisiae. Folia Microbiol. 52, 2007, 120-126. Go to original source...
  48. Conway, E.J., Armstrong, W.McD.:The total intracellular concentration of solutes in yeast and other plant cells and the distensibility of the plant-cell wall. Biochem. J. 81, 1961, 631-639. Go to original source...
  49. Levin, R. L.: Water permeability of yeast cells at sub-zero temperatures, J. Membr. Biol. 46, 1979, 91-124. Go to original source...
  50. White, P. A., Kennedy, A. I., Smart, K. A.: Osmotolerance and the adaptive osmotic stress response in ale and lager brewing yeast. Proc. 29th EBC Congress, pp. 563-574, Dublin 2003.
  51. Arnold, W. N., Lacy, J. S.: Permeability of the cell envelope and osmotic behavior in Saccharomyces cerevisiae. J. Bact. 131, 1977, 564-571. Go to original source...
  52. Sigler, K., Matoulková, D., Dienstbier, M., Gabriel, P.: Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor and haze. Appl. Microbiol. Biotechnol. 82, 2009, 1027-1035. Go to original source...
  53. Cahill G., Murray, D. M., Walsh, P. K., Donnelly, D.: Effect of the concentration of propagation wort on yeast cell volume and fermentation performance.J.Am.Soc.Brew.Chem.58, 2000, 14-20. Go to original source...
  54. Carbrey, J. M., Bonhivers, M., Boeke, J. D., Agre, P.: Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc. Natl. Acad. Sci. USA 98, 2001, 1000-1005. Go to original source...
  55. Reid, G. C.: A review of CO2 toxicity in brewer's yeast. Proc. 2nd Conv. Inst. Brew., 1989, 212-239.
  56. Iwahashi, H., Fujii, S., Obuchi, K., Kaul, S. C., Sato, A., Komatsu, A.: Hydrostatic pressure is like temperature and oxidative stress in the damage it causes to yeast.FEMS Microbiol.Lett.108, 1993, 53-58. Go to original source...
  57. Iwahashi, H., Obuchi, K., Fujii, S., Komatsu, Y.: Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett. 416, 1997, 1-5. Go to original source...
  58. Haukeli, A.D., Lie, S.: Conversion of a-acetolactate and removal of diacetyl: a kinetic study. J. Inst. Brew. 84, 1978, 85-89. Go to original source...